Delicate Control Over Electron Distribution and Water Dissociation Kinetics in Strongly Coupled Ru@NMoC Hybrid Catalyst Realizes Efficient Seawater Electrolysis
Jintao Zhao
School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Devices, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorJie Wang
School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Devices, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Jixin Yao
Anhui Province Key Laboratory of Simulation and Design for Electronic Information System, Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, Anhui, 230601 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLiang Li
School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Devices, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P.R. China
Search for more papers by this authorProf. Dongmeng Chen
College of Science, China University of Petroleum, Qingdao, 266580 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Guang Li
School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Devices, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Genqiang Zhang
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJintao Zhao
School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Devices, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorJie Wang
School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Devices, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P.R. China
Both authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Jixin Yao
Anhui Province Key Laboratory of Simulation and Design for Electronic Information System, Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province, Hefei Normal University, Hefei, Anhui, 230601 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLiang Li
School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Devices, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P.R. China
Search for more papers by this authorProf. Dongmeng Chen
College of Science, China University of Petroleum, Qingdao, 266580 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Guang Li
School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Devices, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Genqiang Zhang
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
In alkaline seawater, ruthenium clusters in nitrogen-doped molybdenum carbide (Ru@NMoC) act as highly efficient catalysts to promote the hydrogen evolution reaction (HER). Theoretical calculations and X-ray absorption spectroscopy reveal that nitrogen doping induces electron redistribution around the Ru clusters, optimizing their electronic structure. This enhances the adsorption and desorption of intermediates, accelerating the HER kinetics.
Abstract
Delicate control over electron distribution in hybrid catalysts is crucial for improving hydrogen evolution catalysis, which remains an aspirational target in advancing efficient hydrogen production. Herein, we optimize the local electronic structures and balance the reaction steps by incorporating Ru clusters into nitrogen-doped molybdenum carbide (denoted as Ru@NMoC), addressing performance limitations in alkaline seawater. The Ru@NMoC catalyst demonstrates ultralow overpotentials of 8, 17, and 20 mV at 10 mA cm⁻2 in 1 M KOH, 1 M KOH + 0.5 M NaCl, and 1 M KOH seawater, respectively, significantly outperforming conventional HER catalysts. Operando spectroscopic techniques reveal strong ability for interface water dissociation and stable local charge structure in Ru@NMoC. Theoretical simulations demonstrate that N-doping of Ru clusters self-optimizes their electronic states and lowering the energy barrier for water dissociation. Self-powered H2 production system can be achieved using Zn–H₂O batteries to drive anion exchange membrane water electrolysis cell, demonstrating its practicability.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
anie202505031-sup-0001-SuppMat.docx42.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Du, Q. Li, L. Han, P. Yang, L. Xin, W. Jin, W. Xiao, Z. Li, J. Wang, Z. Wu, L. Wang, Appl. Catal. B 2024, 344, 123617.
- 2W. J. Dong, Y. Xiao, K. R. Yang, Z. Ye, P. Zhou, I. A. Navid, V. S. Batista, Z. Mi, Nat. Commun. 2023, 14, 179.
- 3J. Chang, G. Wang, Z. Yang, B. Li, Q. Wang, R. Kuliiev, N. Orlovskaya, M. Gu, Y. Du, G. Wang, Y. Yang, Adv. Mater. 2021, 33, 2101425.
- 4H. Hu, Z. Zhang, Y. Zhang, T. Thomas, H. Du, K. Huang, J. P. Attfield, M. Yang, Energy Environ. Sci. 2023, 16, 4584–4592.
- 5W. Chen, Y. Shi, C. Liu, Z. Ren, Z. Huang, Z. Chen, X. Zhang, S. Liang, L. Xie, C. Lian, G. Qian, J. Zhang, X. Liu, D. Chen, X. Zhou, W. Yuan, X. Duan, Nat. Commun. 2024, 15, 8995.
- 6C. Qian, W. Shao, X. Zhang, X. Mu, X. Gu, M. Yu, L. Ma, S. Liu, S. Mu, Small 2022, 18, 2204155.
- 7Y. Yu, H. Xu, X. Xiong, X. Chen, Y. Xiao, H. Wang, D. Wu, Y. Hua, X. Tian, J. Li, Small 2024, 20, 2405784.
- 8Y. Kuang, F. Yang, L. Feng, Adv. Energy Mater. 2024, 14, 2402043.
- 9X.-L. Zhang, P.-C. Yu, S.-P. Sun, L. Shi, P.-P. Yang, Z.-Z. Wu, L.-P. Chi, Y.-R. Zheng, M.-R. Gao, Nat. Commun. 2024, 15, 9462.
- 10L. Zhao, S. Zhou, Z. Lv, W. Xu, J. Liu, Z. Liu, Q. Zhang, J. Lai, L. Wang, Appl. Catal. B 2023, 338, 122996.
- 11W. Xu, T. Ma, H. Chen, D. Pan, Z. Wang, S. Zhang, P. Zhang, S. Bao, Q. Yang, L. Zhou, Z. Tian, S. Dai, Z. Lu, Adv. Funct. Mater. 2023, 33, 2302263.
- 12W. Xu, G. Fan, S. Zhu, Y. Liang, Z. Cui, Z. Li, H. Jiang, S. Wu, F. Cheng, Adv. Funct. Mater. 2021, 31, 2107333.
- 13H. Yang, X. Wang, S. Xia, S. Zhang, R. Zhang, X. Li, X. F. Yu, X. Zhang, L. Bai, Adv. Energy Mater. 2023, 13, 2302727.
- 14X. Liu, J. Chi, H. Mao, L. Wang, Adv. Energy Mater. 2023, 13, 2301438.
- 15F. Zhang, Y. Liu, F. Yu, H. Pang, X. Zhou, D. Li, W. Ma, Q. Zhou, Y. Mo, H. Zhou, ACS Nano 2023, 17, 1681–1692.
- 16Z. W. Chen, J. Li, P. Ou, J. E. Huang, Z. Wen, L. Chen, X. Yao, G. Cai, C. C. Yang, C. V. Singh, Q. Jiang, Nat. Commun. 2024, 15, 359.
- 17B. S. Gu, S. Dutta, Y. R. Hong, O. F. Ngome Okello, H. Im, S. Ahn, S. Y. Choi, J. W. Han, S. Ryu, I. S. Lee, Angew. Chem. Int. Ed. 2023, 62, e202307816.
- 18J. Shen, M. Zhang, Y. Huang, C. Chen, Y. Zheng, S. Dong, J. Jiang, W. Lei, S. Wang, H. Shao, Applied Catalysis B: Environment and Energy 2024, 358, 124392.
- 19B. Zhang, J. Wang, G. Liu, C. M. Weiss, D. Liu, Y. Chen, L. Xia, P. Zhou, M. Gao, Y. Liu, J. Chen, Y. Yan, M. Shao, H. Pan, W. Sun, Nat. Catal. 2024, 7, 441–451.
- 20J.-T. Ren, L. Chen, H.-Y. Wang, W.-W. Tian, X. Zhang, T.-Y. Ma, Z. Zhou, Z.-Y. Yuan, Appl. Catal. B 2023, 327, 122466.
- 21J. T. Ren, L. Chen, Z. Y. Yuan, Materials Today preprint 2025, 86, 282-316.
- 22Y. Zhang, X. Mu, Z. Liu, H. Zhao, Z. Zhuang, Y. Zhang, S. Mu, S. Liu, D. Wang, Z. Dai, Nat. Commun. 2024, 15, 10149.
- 23X. Fan, C. Liu, M. Wu, B. Gao, L. Zheng, Y. Zhang, H. Zhang, Q. Gao, X. Cao, Y. Tang, Appl. Catal. B 2022, 318, 121867.
- 24D. Kong, C. Meng, Y. Wang, X. Chen, J. Zhang, L. Zhao, J. Ji, L. Zhang, Y. Zhou, Appl. Catal. B 2024, 343, 123578.
- 25J. Zhu, J. Chi, X. Wang, T. Cui, L. Guo, B. Dong, X. Liu, L. Wang, Nano Energy 2024, 121, 109249.
- 26X. Chen, X.-T. Wang, J.-B. Le, S.-M. Li, X. Wang, Y.-J. Zhang, P. Radjenovic, Y. Zhao, Y.-H. Wang, X.-M. Lin, J.-C. Dong, J.-F. Li, Nat. Commun. 2023, 14, 5289.
- 27C. Zhou, J. Shi, Z. Dong, L. Zeng, Y. Chen, Y. Han, L. Li, W. Zhang, Q. Zhang, L. Gu, F. Lv, M. Luo, S. Guo, Nat. Commun. 2024, 15, 6741.
- 28R. Li, H. Zhao, L. Wang, Q. Zhou, X. Yang, L. Jiang, X. Luo, J. Yu, J. Wei, S. Mu, Chem. Sci. 2025, 16, 4383–4391.
- 29S. Chandrasekaran, N. Li, Y. Zhuang, L. Sui, Z. Xiao, D. Fan, V. Aravindan, C. Bowen, H. Lu, Y. Liu, Chem. Eng. J. 2022, 431, 134073.
- 30D. Chen, R. Lu, Y. Yao, D. Wu, H. Zhao, R. Yu, Z. Pu, P. Wang, J. Zhu, J. Yu, P. Ji, Z. Kou, H. Tang, S. Mu, J. Mater. Chem. A 2022, 10, 7637–7644.
- 31J. Tian, M. Xia, X. Cheng, C. Mao, Y. Chen, Y. Zhang, C. Zhou, F. Xu, L. Yang, X.-Z. Wang, Q. Wu, Z. Hu, J. Am. Chem. Soc. 2024, 146, 33640–33650.
- 32H. Zhang, F. Wan, X. Li, X. Chen, S. Xiong, B. Xi, Adv. Funct. Mater. 2023, 33, 2306340.
- 33H. Sun, H. C. Chen, M. Humayun, Y. Qiu, J. Ju, Y. Zhang, M. Bououdina, X. Xue, Q. Liu, Y. Pang, C. Wang, Adv. Funct. Mater. 2024, 34, 2408872.
- 34S. Vijayapradeep, N. Logeshwaran, S. Ramakrishnan, A. Rhan Kim, P. Sampath, D. Hwan Kim, D. Jin Yoo, Chem. Eng. J. 2023, 473, 145348.
- 35R. Tang, Y. Yang, Y. Zhou, X. Y. Yu, Adv. Funct. Mater. 2024, 34, 2301925.
- 36X. Liu, X. Wang, K. Li, J. Tang, J. Zhu, J. Chi, J. Lai, L. Wang, Angew. Chem. Int. Ed. 2024, 63, e202316319.
- 37J. Sun, S. Qin, Z. Zhang, C. Li, X. Xu, Z. Li, X. Meng, Appl. Catal. B 2023, 338, 123015.
- 38T. Chao, W. Xie, Y. Hu, G. Yu, T. Zhao, C. Chen, Z. Zhang, X. Hong, H. Jin, D. Wang, W. Chen, X. Li, P. Hu, Y. Li, Energy Environ. Sci. 2024, 17, 1397–1406.
- 39X. Yang, J. Cheng, X. Yang, Y. Xu, W. Sun, J. Zhou, Chem. Eng. J. 2023, 451, 138977.
- 40Y. Chen, Y. Liu, W. Zhai, H. Liu, T. Sakthivel, S. Guo, Z. Dai, Adv. Energy Mater. 2024, 14, 2400059.
- 41H. Wang, Y. Jiao, G. Zhang, W. Ma, W. Fan, X. Liu, Y. Zhao, H. Xie, W. Ma, X. Zong, Adv. Funct. Mater. 2024, 35, 2418617.
- 42X. Gu, M. Yu, S. Chen, X. Mu, Z. Xu, W. Shao, J. Zhu, C. Chen, S. Liu, S. Mu, Nano Energy 2022, 102, 107656.
- 43L. Wang, Y. Hao, L. Deng, F. Hu, S. Zhao, L. Li, S. Peng, Nat. Commun. 2022, 13, 5785.
- 44Y. Wang, Y. Yao, C. Xu, D. Tang, Y. Li, Z. A. Qiao, H. W. Liang, B. Liu, Adv. Mater. 2024, 37, 2416111.
- 45B. Zhou, J. Wang, L. Guo, H. Li, W. Xiao, G. Xu, D. Chen, C. Li, Y. Du, H. Ding, Y. Zhang, Z. Wu, L. Wang, Adv. Energy Mater. 2024, 14, 2402372.
- 46F. Meng, L. Zhu, R. Li, J. Jiang, Y. Li, Y. Wu, Y. Fan, P. Ren, H. Xu, D. Wang, J. Zhang, M. An, P. Yang, Adv. Funct. Mater. 2024, 35, 2416678.
- 47G. Shao, C. Jing, Z. Ma, Y. Li, W. Dang, D. Guo, M. Wu, S. Liu, X. Zhang, K. He, Y. Yuan, J. Luo, S. Dai, J. Xu, Z. Zhou, Nat. Commun. 2024, 15, 385.
- 48Y. Zhu, M. Klingenhof, C. Gao, T. Koketsu, G. Weiser, Y. Pi, S. Liu, L. Sui, J. Hou, J. Li, H. Jiang, L. Xu, W.-H. Huang, C.-W. Pao, M. Yang, Z. Hu, P. Strasser, J. Ma, Nat. Commun. 2024, 15, 1447.
- 49H. Ze, Z.-L. Yang, M.-L. Li, X.-G. Zhang, Y.-L. A., Q.-N. Zheng, Y.-H. Wang, J.-H. Tian, Y.-J. Zhang, J.-F. Li, J. Am. Chem. Soc. 2024, 146, 12538–12546.
- 50Z. Luo, Y. Guo, Y. Qian, L. Zhang, Z. Song, Q. Zhang, C. He, X. Ren, Adv. Funct. Mater. 2024, 34, 2405881.
- 51Y. Wang, H. Zhuo, X. Zhang, Y. Li, J. Yang, Y. Liu, X. Dai, M. Li, H. Zhao, M. Cui, H. Wang, J. Li, J. Mater. Chem. A 2019, 7, 24328–24336.
- 52J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen, X. Feng, Energy Environ. Sci. 2016, 9, 2789–2793.
- 53X. Zhao, X. Li, L. An, K. Iputera, J. Zhu, P. Gao, R.-S. Liu, Z. Peng, J. Yang, D. Wang, Energy Environ. Sci. 2022, 15, 1234–1242.
- 54X. Liu, Y. Jiao, Y. Zheng, S.-Z. Qiao, ACS Catal. 2020, 10, 1847–1854.
- 55X. Wang, R. Lu, S. Gong, S. Yang, W. Wang, Z. Sun, X. Zhang, J. Liu, X. Lv, Chem. Eng. J. 2025, 503, 158488.