Microwave-Responsive Flexible Room-Temperature Phosphorescence Materials Based on Poly(vinylidene fluoride) Polymer
Yongfeng Zhang
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorWei Zhang
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorJunming Xia
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorChenchen Xiong
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorGengchen Li
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorProf. Xiaodong Li
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorDr. Peng Sun
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorDr. Jianbing Shi
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorProf. Bin Tong
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhengxu Cai
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yuping Dong
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorYongfeng Zhang
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorWei Zhang
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorJunming Xia
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorChenchen Xiong
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorGengchen Li
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorProf. Xiaodong Li
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorDr. Peng Sun
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorDr. Jianbing Shi
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorProf. Bin Tong
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhengxu Cai
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yuping Dong
School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081 P. R. China
Search for more papers by this authorGraphical Abstract
Abstract
The development of flexible, room-temperature phosphorescence (RTP) materials remains challenging owing to the quenching of their unstable triplet excitons via molecular motion. Therefore, a polymer matrix with Tg higher than room temperature is required to prevent polymer segment movement. In this study, a RTP material was developed by incorporating a 4-biphenylboronic acid (BPBA) phosphor into a poly(vinylidene fluoride) (PVDF) matrix (Tg=−27.1 °C), which exhibits a remarkable UV-light-dependent oxygen consumption phosphorescence with a lifetime of 1275.7 ms. The adjustable RTP performance is influenced by the crystallinity and polymorph (α, β, and γ phases) fraction of PVDF, therefore, the low Tg of the PVDF matrix enables the polymeric segmental motion upon microwave irradiation. Consequently, a reduction in the crystallinity and an increase in the α phase fraction in PVDF film induces RTP after 2.45 GHz microwave irradiation. These findings open up new avenues for constructing crystalline and phase-dependent RTP materials while demonstrating a promising approach toward microwave detection.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202314273-sup-0001-misc_information.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Hou, L. Yi, C. Li, H. Zhao, R. Zhang, B. Zhou, X. Liu, Nat. Electron. 2022, 5, 682.
- 2W. Heng, S. Solomon, W. Gao, Adv. Mater. 2022, 34, e2107902.
- 3P. Q. Nguyen, L. R. Soenksen, N. M. Donghia, N. M. Angenent-Mari, H. de Puig, A. Huang, R. Lee, S. Slomovic, T. Galbersanini, G. Lansberry, H. M. Sallum, E. M. Zhao, J. B. Niemi, J. J. Collins, Nat. Biotechnol. 2021, 39, 1366.
- 4M. Liu, N. Yazdani, M. Yarema, M. Jansen, V. Wood, E. H. Sargent, Nat. Electron. 2021, 4, 548.
- 5F. Sun, H. Jiang, H. Wang, Y. Zhong, Y. Xu, Y. Xing, M. Yu, L. W. Feng, Z. Tang, J. Liu, H. Sun, H. Wang, G. Wang, M. Zhu, Chem. Rev. 2023, 123, 4693.
- 6Y. Su, S. Z. F. Phua, Y. Li, X. Zhou, D. Jana, G. Liu, W. Q. Lim, W. K. Ong, C. Yang, Y. Zhao, Sci. Adv. 2018, 4, eaas9732.
- 7R. Tian, S. M. Xu, Q. Xu, C. Lu, Sci. Adv. 2020, 6, eaaz6107.
- 8Y. Zhang, Y. Su, H. Wu, Z. Wang, C. Wang, Y. Zheng, X. Zheng, L. Gao, Q. Zhou, Y. Yang, X. Chen, C. Yang, Y. Zhao, J. Am. Chem. Soc. 2021, 143, 13675.
- 9Y. Ren, W. Dai, S. Guo, L. Dong, S. Huang, J. Shi, B. Tong, N. Hao, L. Li, Z. Cai, Y. Dong, J. Am. Chem. Soc. 2022, 144, 1361–1369.
- 10S. Xiong, Y. Xiong, D. Wang, Y. Pan, K. Chen, Z. Zhao, D. Wang, B. Z. Tang, Adv. Mater. 2023, 35, e2301874.
- 11H. Wu, D. Wang, Z. Zhao, D. Wang, Y. Xiong, B. Z. Tang, Adv. Funct. Mater. 2021, 31, 2101656.
- 12K. Zhang, L. Y. Peng, X. X. Liu, X. Xu, W. H. Fang, G. Cui, Y. Z. Chen, C. H. Tung, L. Z. Wu, Angew. Chem. Int. Ed. 2023, 135, e202300927.
- 13W. Dai, Y. Zhang, X. Wu, S. Guo, J. Ma, J. Shi, B. Tong, Z. Cai, H. Xie, Y. Dong, CCS Chem. 2021, 3050–3059.
- 14M. Gmelch, H. Thomas, F. Fries, S. Reineke, Sci. Adv. 2019, 5, eaau7310.
- 15A. Huang, Y. Fan, K. Wang, Z. Wang, X. Wang, K. Chang, Y. Gao, M. Chen, Q. Li, Z. Li, Adv. Mater. 2023, 35, e2209166.
- 16Y. Lei, W. Dai, G. Li, Y. Zhang, X. Huang, Z. Cai, Y. Dong, J. Phys. Chem. Lett. 2023, 14, 1794.
- 17S. Guo, W. Dai, X. Chen, Y. Lei, J. Shi, B. Tong, Z. Cai, Y. Dong, ACS Mater. Lett. 2021, 3, 379.
- 18Y. Zhai, S. Li, J. Li, S. Liu, T. D. James, J. L. Sessler, Z. Chen, Nat. Commun. 2023, 14, 2614.
- 19H. Shi, W. Yao, W. Ye, H. Ma, W. Huang, Z. An, Acc. Chem. Res. 2022, 55, 3445–3459.
- 20W. Dai, X. Niu, X. Wu, Y. Ren, Y. Zhang, G. Li, H. Su, Y. Lei, J. Xiao, J. Shi, B. Tong, Z. Cai, Y. Dong, Angew. Chem. Int. Ed. 2022, 61, e202200236.
- 21D. Guo, Y. Wang, J. Chen, Y. Cao, Y. Miao, H. Huang, Z. Chi, Z. Yang, Chin. Chem. Lett. 2023, 34, 107882.
- 22T. Zhang, X. Ma, H. Wu, L. Zhu, Y. Zhao, H. Tian, Angew. Chem. Int. Ed. 2020, 59, 11206.
- 23J. Yang, Y. Zhang, X. Wu, W. Dai, D. Chen, J. Shi, B. Tong, Q. Peng, H. Xie, Z. Cai, Y. Dong, X. Zhang, Nat. Commun. 2021, 12, 4883.
- 24W. Zhao, Z. He, B. Z. Tang, Nat. Rev. Mater. 2020, 5, 869.
- 25Y. Zhang, C. Xiong, W. Wang, W. Dai, Y. Ren, J. Xia, G. Li, J. Shi, B. Tong, X. Zheng, X. Shao, Z. Cai, Y. Dong, Aggregate 2023, e310.
- 26H. Li, X. Xue, Y. Cao, H. Cheng, A. Luo, N. Guo, H. Li, G. Xie, Y. Tao, R. Chen, W. Huang, J. Am. Chem. Soc. 2023, 145, 7343.
- 27D. Lee, O. Bolton, B. C. Kim, J. H. Youk, S. Takayama, J. Kim, J. Am. Chem. Soc. 2013, 135, 6325.
- 28X. Zheng, Y. Zhang, L. Gao, Z. Wang, C. Wang, Y. Zheng, X. Chen, Y. Yang, J. Peng, L. Qu, C. Yang, Adv. Mater. Interfaces 2022, 9, 2200344.
- 29K. Wan, B. Tian, Y. Zhai, Y. Liu, H. Wang, S. Liu, S. Li, W. Ye, Z. An, C. Li, J. Li, T. D. James, Z. Chen, Nat. Commun. 2022, 13, 5508.
- 30K. Wan, Y. Zhai, S. Liu, J. Li, S. Li, B. Strehmel, Z. Chen, T. D. James, Angew. Chem. Int. Ed. 2022, 61, e202202760.
- 31Z. Xu, Y. He, H. Shi, Z. An, SmartMat 2022, 4, e1139.
- 32Y. Zhang, L. Gao, X. Zheng, Z. Wang, C. Yang, H. Tang, L. Qu, Y. Li, Y. Zhao, Nat. Commun. 2021, 12, 2297.
- 33X. Zou, N. Gan, M. Dong, W. Huo, A. Lv, X. Yao, C. Yin, Z. Wang, Y. Zhang, H. Chen, H. Ma, L. Gu, Z. An, W. Huang, Adv. Mater. 2023, 35, 2210489.
- 34S. Kuila, S. J. George, Angew. Chem. Int. Ed. 2020, 59, 9393.
- 35Y. Li, G. V. Baryshnikov, C. Xu, H. Agren, L. Zhu, T. Yi, Y. Zhao, H. Wu, Angew. Chem. Int. Ed. 2021, 60, 23842.
- 36Z. A. Yan, X. Lin, S. Sun, X. Ma, H. Tian, Angew. Chem. Int. Ed. 2021, 60, 19735–19739.
- 37T. Ogoshi, H. Tsuchida, T. Kakuta, T. A. Yamagishi, A. Taema, T. Ono, M. Sugimoto, M. Mizuno, Adv. Funct. Mater. 2018, 28, 1707369.
- 38X. Lin, J. Wang, B. Ding, X. Ma, H. Tian, Angew. Chem. Int. Ed. 2021, 60, 3459–3463.
- 39H. Lv, H. Tang, Y. Cai, T. Wu, D. Peng, Y. Yao, X. Xu, Angew. Chem. Int. Ed. 2022, 61, e202204209.
- 40J. Wei, M. Zhu, T. Du, J. Li, P. Dai, C. Liu, J. Duan, S. Liu, X. Zhou, S. Zhang, L. Guo, H. Wang, Y. Ma, W. Huang, Q. Zhao, Nat. Commun. 2023, 14. 4839.
- 41J. Liu, G. Wang, X. Chen, J. Li, X. Wang, Y. Zou, B. Wang, K. Zhang, Adv. Opt. Mater. 2022, 10, 2201502.
- 42X. Zhang, M. Zeng, Y. Zhang, C. Zhang, Z. Gao, F. He, X. Xue, H. Li, P. Li, G. Xie, H. Li, X. Zhang, N. Guo, H. Cheng, A. Luo, W. Zhao, Y. Zhang, Y. Tao, R. Chen, W. Huang, Nat. Commun. 2023, 14, 475.
- 43X. Yao, H. Ma, X. Wang, H. Wang, Q. Wang, X. Zou, Z. Song, W. Jia, Y. Li, Y. Mao, M. Singh, W. Ye, J. Liang, Y. Zhang, Z. Liu, Y. He, J. Li, Z. Zhou, Z. Zhao, Y. Zhang, G. Niu, C. Yin, S. Zhang, H. Shi, W. Huang, Z. An, Nat. Commun. 2022, 13, 4890.
- 44J. Guo, C. Yang, Y. Zhao, Acc. Chem. Res. 2022, 55, 1160.
- 45F. C. Unterleitner, E. I. Hormats, J. Phys. Chem. 1965, 69, 2516.
- 46X. Lu, B.-H. Han M A Winnik, J. Phys. Chem. B 2003, 107, 13349.
- 47X. Yao, J. Wang, D. Jiao, Z. Huang, O. Mhirsi, F. Lossada, L. Chen, B. Haehnle, A. J. C. Kuehne, X. Ma, H. Tian, A. Walther, Adv. Mater. 2021, 33, e2005973.
- 48M. G. Evich, M. J. B. Davis, J. P. McCord, B. Acrey, J. A. Awkerman, D. R. U. Knappe, A. B. Lindstrom, T. F. Speth, C. Tebes-Stevens, M. J. Strynar, Z. Wang, E. J. Weber, W. M. Henderson, J. W. Washington, Science 2022, 375, eabg9065.
- 49X. Tan, P. Dewapriya, P. Prasad, Y. Chang, X. Huang, Y. Wang, X. Gong, T. E. Hopkins, C. Fu, K. V. Thomas, H. Peng, A. K. Whittaker, C. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202213071.
- 50P. Martins, A. C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 2014, 39, 683.
- 51B. Stadlober, M. Zirkl, M. Irimia-Vladu, Chem. Soc. Rev. 2019, 48, 1787.
- 52Z. Cui, N. T. Hassankiadeh, Y. Zhuang, E. Drioli, Y. M. Lee, Prog. Polym. Sci. 2015, 51, 94.
- 53D. Li, Y. Yang, J. Yang, M. Fang, B. Z. Tang, Z. Li, Nat. Commun. 2022, 13, 347.
- 54D. Li, J. Yang M M Fang, B. Z. Tang, Z. Li, Sci. Adv. 2022, 8, eabl8392.
- 55F. Nie, B. Zhou, K.-Z. Wang, D. Yan, Chem. Eng. J. 2022, 430, 133084.
- 56W. Tao, Y. Zhou, F. Lin, H. Gao, Z. Chi, G. Liang, Adv. Opt. Mater. 2022, 10, 2102449.
- 57Note: The slight difference can be attributed to the different temperature scanning rates of different measurments.
- 58K. Majdzadeh-Ardakani, M. M. Banaszak Holl, Prog. Mater. Sci. 2017, 87, 221.
- 59S. H. Siddiki, S. Das, K. Verma, L. Dashairya, S. Das, V. K. Thakur, G. C. Nayak, Ceram. Int. 2022, 48, 30260.
- 60C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Nano-Micro Lett. 2023, 15, 13.
- 61S. Nizamuddin, H. A. Baloch, M. T. H. Siddiqui, N. M. Mubarak, M. M. Tunio, A. W. Bhutto, A. S. Jatoi, G. J. Griffin, M. P. Srinivasan, Rev. Environ. Sci. Bio/Technol. 2018, 17, 813.
- 62B. Zhao, J. Deng, C. Zhao, C. Wang, Y. G. Chen, M. Hamidinejad, R. Li, C. B. Park, J. Mater. Chem. C 2020, 8, 58.