Nickel-Catalyzed Asymmetric Propargyl-Aryl Cross-Electrophile Coupling
Linlin Ding
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorDr. Yue Zhao
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorProf. Dr. Hongjian Lu
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorProf. Dr. Zhuangzhi Shi
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Minyan Wang
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorLinlin Ding
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorDr. Yue Zhao
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorProf. Dr. Hongjian Lu
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorProf. Dr. Zhuangzhi Shi
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Minyan Wang
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorGraphical Abstract
A catalytic enantioselective propargyl-aryl cross-coupling between two electrophiles was achieved for the first time in a stereoconvergent manner. The potential utility of this conversion is demonstrated in the facile construction of stereoenriched bioactive molecule derivatives and medicinal compounds based on the diversity of acetylenic chemistry. Detailed experimental studies have revealed the key mechanistic features of this transformation.
Abstract
Performing asymmetric cross-coupling reactions between propargylic electrophiles and aryl nucleophiles is a well-established method to build enantioenriched benzylic alkynes. Here, a catalytic enantioselective propargyl-aryl cross-coupling between two electrophiles was achieved for the first time in a stereoconvergent manner. Propargylic chlorides were treated with aryl iodides as well as heteroaryl iodides in the presence of a chiral nickel complex, and manganese metal was used as a stoichiometric reductant, allowing for the construction of a propargyl C-aryl bond under mild conditions. An alternative dual nickel/photoredox catalytic protocol was also developed for this cross-electrophile coupling in the absence of a metal reductant. The potential utility of this conversion is demonstrated in the facile construction of stereoenriched bioactive molecule derivatives and medicinal compounds based on the diversity of acetylenic chemistry. Detailed experimental studies have revealed the key mechanistic features of this transformation.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202313655-sup-0001-25.cif1.2 MB | Supporting Information |
anie202313655-sup-0001-26.cif4.3 MB | Supporting Information |
anie202313655-sup-0001-27.cif6.1 MB | Supporting Information |
anie202313655-sup-0001-3at.cif1.2 MB | Supporting Information |
anie202313655-sup-0001-misc_information.pdf19.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. M. Trost, & C. J. Li, Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations; Wiley-VCH, Weinheim, 2014;
10.1002/9783527677894 Google Scholar
- 1bF. Diederich, P. J. Stang, R. R. Tykwinski, Acetylene Chemistry Chemistry, Biology and Material Science; Wiley-VCH: Weinheim, 2005;
- 1cD. Huang, Y. Liu, A.-J. Qin, B.-Z. Tang, Polym. Chem. 2018, 9, 2853–2867.
- 2
- 2aI. T. Trotuş, T. Zimmermann, F. Schüth, Chem. Rev. 2014, 114, 1761–1782;
- 2bV. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra, A. S. Singh, X. Chen, Chem. Rev. 2016, 116, 3086–3240.
- 3
- 3aL. Fu, S. Zhou, X. Wan, P. Chen, G. Liu, J. Am. Chem. Soc. 2018, 140, 10965–10969;
- 3bH. Xia, Z.-L. Li, Q.-S. Gu, X.-Y. Dong, J.-H. Fang, X.-Y. Du, L.-L. Wang, X.-Y. Liu, Angew. Chem. Int. Ed. 2020, 59, 16926–16932;
- 3cX. Jiang, B. Han, Y. Xue, M. Duan, Z. Gui, Y. Wang, S. Zhu, Nat. Commun. 2021, 12, 3792;
- 3dA. E. Wendlandt, P. Vangal, E. N. Jacobsen, Nature 2018, 556, 447–451.
- 4Y. Nishibayashi, I. Wakiji, M. Hidai, J. Am. Chem. Soc. 2000, 122, 11019–11020.
- 5
- 5aG. Hattori, K. Sakata, H. Matsuzawa, Y. Tanabe, Y. Miyake, Y. Nishibayashi, J. Am. Chem. Soc. 2010, 132, 10592–10608;
- 5bK. Nakajima, M. Shibata, Y. Nishibayashi, J. Am. Chem. Soc. 2015, 137, 2472–2475;
- 5cR.-Z. Li, H. Tang, K. R. Yang, L.-Q. Wan, X. Zhang, J. Liu, Z. Fu, D. Niu, Angew. Chem. Int. Ed. 2017, 56, 7213–7217;
- 5dR.-Z. Li, D.-Q. Liu, D. Niu, Nat. Catal. 2020, 3, 672–680.
- 6
- 6aH. Huo, B. J. Gorsline, G. C. Fu, Science 2020, 367, 559–564;
- 6bS. W. Smith, G. C. Fu, Angew. Chem. Int. Ed. 2008, 47, 9334–9336;
- 6cY. Miyake, S. Uemura, Y. Nishibayashi, ChemCatChem 2009, 1, 342–356;
- 6dN. Ljungdahl, N. Kann, Angew. Chem. Int. Ed. 2009, 48, 642–644;
- 6eF.-D. Lu, D. Liu, L. Zhu, L.-Q. Lu, Q. Yang, Q.-Q. Zhou, Y. Wei, Y. Lan, W.-J. Xiao, J. Am. Chem. Soc. 2019, 141, 6167–6172.
- 7
- 7aX. Chang, J. Zhang, L. Peng, C. Guo, Nat. Commun. 2021, 12, 299;
- 7bL. Peng, Z. He, X. Xu, C. Guo, Angew. Chem. Int. Ed. 2020, 59, 14270–14274;
- 7cX. Xu, L. Peng, X. Chang, C. Guo, J. Am. Chem. Soc. 2021, 143, 21048–21055;
- 7dQ. Hu, Z. He, L. Peng, C. Guo, Nat. Synth. 2022, 1, 322–331;
- 7eZ. He, L. Peng, C. Guo, Nat. Synth. 2022, 1, 393–400.
- 8
- 8aS. W. Smith, G. C. Fu, J. Am. Chem. Soc. 2008, 130, 12645–12647;
- 8bN. D. Schley, G. C. Fu, J. Am. Chem. Soc. 2014, 136, 16588–16593.
- 9A. J. Oelke, J. Sun, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 2966–2969.
- 10S. Jiang, X.-Y. Dong, Q.-S. Gu, L. Ye, Z.-L. Li, X.-Y. Liu, J. Am. Chem. Soc. 2020, 142, 19652–19659.
- 11M. Guisán-Ceinos, V. Martín-Heras, M. Tortosa, J. Am. Chem. Soc. 2017, 139, 8448–8451.
- 12
- 12aX.-Y. Dong, Y.-F. Zhang, C.-L. Ma, Q.-S. Gu, F.-L. Wang, Z.-L. Li, S.-P. Jiang, X.-Y. Liu, Nat. Chem. 2019, 11, 1158–1166;
- 12bF.-L. Wang, C.-J. Yang, J.-R. Liu, N.-Y. Yang, X.-Y. Dong, R.-Q. Jiang, X.-Y. Chang, Z.-L. Li, G.-X. Xu, D.-L. Yuan, Y.-S. Zhang, Q.-S. Gu, X. Hong, X.-Y. Liu, Nat. Chem. 2022, 14, 949–957.
- 13
- 13aD. A. Everson, D. J. Weix, J. Org. Chem. 2014, 79, 4793–4798;
- 13bC. E. I. Knappke, S. Grupe, D. Gartner, M. Corpet, C. Gosmini, A. Jacobi von Wangelin, Chem. Eur. J. 2014, 20, 6828–6842;
- 13cT. Moragas, A. Correa, R. Martin, Chem. Eur. J. 2014, 20, 8242–8258;
- 13dD. J. Weix, Acc. Chem. Res. 2015, 48, 1767–1775;
- 13eJ. Gu, X. Wang, W. Xue, H. Gong, Org. Chem. Front. 2015, 2, 1411–1421.
- 14
- 14aM. F. Semmelhack, P. M. Helquist, L. D. Jones, J. Am. Chem. Soc. 1971, 93, 5908–5910;
- 14bA. S. Kende, L. S. Liebeskind, D. M. Braitsch, Tetrahedron Lett. 1975, 16, 3375–3378;
- 14cM. Zembayashi, K. Tamao, J. Yoshida, M. Kumada, Tetrahedron Lett. 1977, 18, 4089–4092.
- 15
- 15aK. E. Poremba, S. E. Dibrell, S. E. Reisman, ACS Catal. 2020, 10, 8237–8246;
- 15bB.-B. Wu, J. Xu, K.-J. Bian, Q. Gao, X.-S. Wang, J. Am. Chem. Soc. 2022, 144, 6543–6550;
- 15cH. Wang, P. Zheng, X. Wu, Y. Li, T. Xu, J. Am. Chem. Soc. 2022, 144, 3989–3997;
- 15dT. J. DeLano, S. E. Dibrell, C. R. Lacker, A. R. Pancoast, K. E. Poremba, L. Cleary, M. S. Sigman, S. E. Reisman, Chem. Sci. 2021, 12, 7758–7762;
- 15eD. Sun, G. Ma, X. Zhao, C. Lei, H. Gong, Chem. Sci. 2021, 12, 5253–5258;
- 15fH. Tu, F. Wang, L. Huo, Y. Li, S. Zhu, X. Zhao, H. Li, F.-L. Qing, L. Chu, J. Am. Chem. Soc. 2020, 142, 9604–9611;
- 15gD. Anthony, Q. Lin, J. Baudet, T. Diao, Angew. Chem. Int. Ed. 2019, 58, 3198–3202;
- 15hX. Wei, W. Shu, A. García-Domínguez, E. Merino, C. Nevado, J. Am. Chem. Soc. 2020, 142, 13515–13522;
- 15iX. Wu, J. Qu, Y. Chen, J. Am. Chem. Soc. 2020, 142, 15654–15660;
- 15jX. Jiang, W. Xiong, S. Deng, F.-D. Lu, Y. Jia, Q. Yang, L.-Y. Xue, X. Qi, J. A. Tunge, L.-Q. Lu, W.-J. Xiao, Nat. Catal. 2022, 5, 788–797;
- 15kK. Wang, Z. Ding, Z. Zhou, W. Kong, J. Am. Chem. Soc. 2018, 140, 12364–12368.
- 16
- 16aA. H. Cherney, N. T. Kadunce, S. E. Reisman, J. Am. Chem. Soc. 2013, 135, 7442–7445;
- 16bA. H. Cherney, S. E. Reisman, J. Am. Chem. Soc. 2014, 136, 14365–14368;
- 16cJ. L. Hofstra, A. H. Cherney, C. M. Ordner, S. E. Reisman, J. Am. Chem. Soc. 2018, 140, 139–142;
- 16dT. J. DeLano, S. E. Reisman, ACS Catal. 2019, 9, 6751–6754;
- 16eK. E. Poremba, N. T. Kadunce, N. Suzuki, A. H. Cherney, S. E. Reisman, J. Am. Chem. Soc. 2017, 139, 5684–5687;
- 16fN. Suzuki, J. L. Hofstra, K. E. Poremba, S. E. Reisman, Org. Lett. 2017, 19, 2150–2153.
- 17
- 17aB. P. Woods, M. Orlandi, C.-Y. Huang, M. S. Sigman, A. G. Doyle, J. Am. Chem. Soc. 2017, 139, 5688–5691;
- 17bS. H. Lau, M. A. Borden, T. J. Steiman, M. Parasram, L. S. Wang, A. G. Doyle, J. Am. Chem. Soc. 2021, 143, 15873–15881.
- 18Z. Zhu, L. Lin, J. Xiao, Z. Shi, Angew. Chem. Int. Ed. 2022, 61, e202113209.
- 19
- 19aF.-H. Zhang, X. Guo, X. Zeng, Z. Wang, Angew. Chem. Int. Ed. 2022, 61, e202117114;
- 19bY. Jin, H. Wen, F. Yang, D. Ding, C. Wang, ACS Catal. 2021, 11, 13355–13362.
- 20
- 20aM. Sakai, M. Ueda, N. Miyaura, Angew. Chem. Int. Ed. 1998, 37, 3279–73281;
10.1002/(SICI)1521-3773(19981217)37:23<3279::AID-ANIE3279>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 20bH-F. Duan, J.-H. Xie, W.-J. Shi, Q. Zhang, Q.-L. Zhou, Org. Lett. 2006, 8, 1479–1481;
- 20cT. Nishimura, H. Kumamoto, M. Nagaosa, T. Hayashi, Chem. Commun. 2009, 38, 5713–5715;
- 20dY. Yamamoto, K. Kurihara, N. Miyaura, Angew. Chem. Int. Ed. 2009, 48, 4414–4416;
- 20eS. Morikawa, K. Michigami, H. Amii, Org. Lett. 2010, 12, 2520–2523;
- 20fC.-H. Xing, Y.-X. Liao, P. He, Q.-S. Hu, Chem. Commun. 2010, 46, 3010–3012;
- 20gJ. Karthikeyan, M. Jeganmohan, C.-H. Cheng, Chem. Eur. J. 2010, 16, 8989–8992;
- 20hZ.-C. Wang, J. Gao, Y. Cai, X. Ye, S.-L. Shi, CCS Chem. 2021, 4, 1169–1179;
- 20iY. Cai, L.-X. Ruan, R. Abdul, S.-L. Shi, Angew. Chem. Int. Ed. 2021, 60, 5262–5267.
- 21
- 21aK. E. Poremba, N. T. Kadunce, N. Suzuki, A. H. Cherney, S. E. Reisman, J. Am. Chem. Soc. 2018, 140, 7746–7746;
- 21bB. P. Woods, M. Orlandi, C.-Y. Huang, M. S. Sigman, A. G. Doyle, J. Am. Chem. Soc. 2018, 140, 7744–7745;
- 21cH. Guan, Q. Zhang, P. J. Walsh, J. Mao, Angew. Chem. Int. Ed. 2020, 59, 5172–5177.
- 22Single crystals of compounds 3 at, 25, 26, and 27, were grown for X-ray analysis using the slow evaporation technique with a solvent mixture of DCM (or THF) and hexane at room temperature. Deposition numbers 2265051 (for 3 at), 2265055 (for 25), 2265056 (for 26), and 2265057 (for 27) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 23
- 23aC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363;
- 23bM. N. Hopkinson, B. Sahoo, J. L. Li, F. Glorius, Chem. Eur. J. 2014, 20, 3874–3886;
- 23cJ. Twilton, C. C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat. Chem. Rev. 2017, 1, 0052;
- 23dF.-D. Lu, J. Chen, X. Jiang, J.-R. Chen, L.-Q. Lu, W.-J. Xiao, Chem. Soc. Rev. 2021, 50, 12808–12827;
- 23eA. Y. Chan, I. B. Perry, N. B. Bissonnette, B. F. Buksh, G. A. Edwards, L. I. Frye, O. L. Garry, M. N. Lavagnino, B. X. Li, Y. Liang, E. Mao, A. Millet, J. V. Oakley, N. L. Reed, H. A. Sakai, C. P. Seath, D. W. C. MacMillan, Chem. Rev. 2022, 122, 1485–1542.
- 24L. Ju, Q. Lin, N. J. LiBretto, C. L. Wagner, C. T. Hu, J. T. Miller, T. Diao, J. Am. Chem. Soc. 2021, 143, 14458–14463.
- 25
- 25aD. Guillaneux, S.-H. Zhao, O. Samuel, D. Rainford, H. B. Kagan, J. Am. Chem. Soc. 1994, 116, 9430–9439;
- 25bC. Girard, H. B. Kagan, Angew. Chem. Int. Ed. 1998, 37, 2922–2959;
10.1002/(SICI)1521-3773(19981116)37:21<2922::AID-ANIE2922>3.0.CO;2-1 PubMed Web of Science® Google ScholarAngew. Chem. 1998, 110, 3088–3127.10.1002/(SICI)1521-3757(19981102)110:21<3088::AID-ANGE3088>3.0.CO;2-A Web of Science® Google Scholar
- 26
- 26aA. Duan, F. Xiao, Y. Lan, L. Niu, Chem. Soc. Rev. 2022, 51, 9986–10015;
- 26bS. Biswas, D. J. Weix, J. Am. Chem. Soc. 2013, 135, 16192–16197;
- 26cQ. Lin, E. H. Spielvogel, T. Diao, Chem 2023, 9, 1295–1308.
- 27All calculations were performed at the M06-D3/6–311+G(d,p)-SDD/SMD(THF)-//B3LYP-D3/6-31G(d)-SDD/SMD(THF) level of theory using Gaussian 09 software package (see Supporting Information for details). Furthermore, we found that using 2/3 of the entropy correction for ΔG values at 273 K provides results comparable with experimental data where available.
- 28
- 28aM. Yuan, O. Gutierrez, IREs Comput. Mol. Sci. 2022, 12, e1573;
- 28bH. Yin, G. C. Fu, J. Am. Chem. Soc. 2019, 141, 15433–15440;
- 28cL. Guo, M. Yuan, Y. Zhang, F. Wang, S. Zhu, O. Gutierrez, L. Chu, J. Am. Chem. Soc. 2020, 142, 20390–20399.