Photocatalytic Free Radical-Controlled Synthesis of High-Performance Single-Atom Catalysts
Xiang Chen
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorDr. Shuhui Guan
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorJianjiang Zhou
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorHengjun Shang
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorJingyuan Zhang
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorFujian Lv
College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655400 China
Search for more papers by this authorCorresponding Author
Prof. Han Yu
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorProf. Dr. Hexing Li
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Shanghai University of Electric Power, 2588 Changyang Rd., Shanghai, 200090 China
Search for more papers by this authorCorresponding Author
Prof. Zhenfeng Bian
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorXiang Chen
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorDr. Shuhui Guan
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorJianjiang Zhou
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorHengjun Shang
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorJingyuan Zhang
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorFujian Lv
College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655400 China
Search for more papers by this authorCorresponding Author
Prof. Han Yu
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorProf. Dr. Hexing Li
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Shanghai University of Electric Power, 2588 Changyang Rd., Shanghai, 200090 China
Search for more papers by this authorCorresponding Author
Prof. Zhenfeng Bian
MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234 China
Search for more papers by this authorGraphical Abstract
Abstract
Single-atom catalysts (SACs) have emerged as crucial players in catalysis research, prompting extensive investigation and application. The precise control of metal atom nucleation and growth has garnered significant attention. In this study, we present a straightforward approach for preparing SACs utilizing a photocatalytic radical control strategy. Notably, we demonstrate for the first time that radicals generated during the photochemical process effectively hinder the aggregation of individual atoms. By leveraging the cooperative anchoring of nitrogen atoms and crystal lattice oxygen on the support, we successfully stabilize the single atom. Our Pd1/TiO2 catalysts exhibit remarkable catalytic activity and stability in the Suzuki–Miyaura cross-coupling reaction, which was 43 times higher than Pd/C. Furthermore, we successfully depose Pd atoms onto various substrates, including TiO2, CeO2, and WO3. The photocatalytic radical control strategy can be extended to other single-atom catalysts, such as Ir, Pt, Rh, and Ru, underscoring its broad applicability.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Wang, J. Li, T. Zhang, Nat. Chem. Rev. 2018, 2, 65–81;
- 1bX. F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740–1748.
- 2Z. Y. Wu, P. Zhu, D. A. Cullen, Y. Hu, Q. Q. Yan, S. C. Shen, F. Y. Chen, H. Yu, M. Shakouri, J. D. Arregui-Mena, A. Ziabari, A. R. Paterson, H. W. Liang, H. Wang, Nat. Synth. 2022, 1, 658–667.
- 3
- 3aS. K. Kaiser, Z. Chen, D. Faust Akl, S. Mitchell, J. Perez-Ramirez, Chem. Rev. 2020, 120, 11703–11809;
- 3bH. He, H. H. Wang, J. Liu, X. Liu, W. Li, Y. Wang, Molecules 2021, 26, 6501.
- 4H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 2018, 1, 63–72.
- 5S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang, Y. Li, Chem. Rev. 2020, 120, 11900–11955.
- 6S. Ding, Y. Guo, M. J. Hülsey, B. Zhang, H. Asakura, L. Liu, Y. Han, M. Gao, J. Y. Hasegawa, B. Qiao, T. Zhang, N. Yan, Chem 2019, 5, 3207–3219.
- 7J. Liu, ACS Catal. 2017, 7, 34–59.
- 8
- 8aL. Liu, U. Diaz, R. Arenal, G. Agostini, P. Concepcion, A. Corma, Nat. Mater. 2017, 16, 132–138;
- 8bT. He, S. Chen, B. Ni, Y. Gong, Z. Wu, L. Song, L. Gu, W. Hu, X. Wang, Angew. Chem. Int. Ed. 2018, 57, 3493–3498.
- 9Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Joule 2018, 2, 1242–1264.
- 10J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong, X. Zheng, Y. Wang, W. Yan, C. Chen, Q. Peng, D. Wang, Y. Li, Adv. Mater. 2018, 30, 1705369.
- 11
- 11aX. Zhang, S. Zhang, Y. Yang, L. Wang, Z. Mu, H. Zhu, X. Zhu, H. Xing, H. Xia, B. Huang, J. Li, S. Guo, E. Wang, Adv. Mater. 2020, 32, e1906905;
- 11bY. N. Gong, L. Jiao, Y. Qian, C. Y. Pan, L. Zheng, X. Cai, B. Liu, S. H. Yu, H. L. Jiang, Angew. Chem. Int. Ed. 2020, 59, 2705–2709.
- 12J. Yang, B. Chen, X. Liu, W. Liu, Z. Li, J. Dong, W. Chen, W. Yan, T. Yao, X. Duan, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 2018, 57, 9495–9500.
- 13H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao, Q. Liu, Y. Lin, J. Pei, Z. Li, Z. Jiang, D. Zhou, L. Zheng, Y. Wang, J. Zhou, Z. Yang, R. Cao, R. Sarangi, T. Sun, X. Yang, X. Zheng, W. Yan, Z. Zhuang, J. Li, W. Chen, D. Wang, J. Zhang, Y. Li, Nat. Commun. 2020, 11, 3049.
- 14
- 14aY. Chen, Q. Qiao, J. Cao, H. Li, Z. Bian, Joule 2021, 5, 3097–3115;
- 14bS. Ghosh, N. A. Kouame, L. Ramos, S. Remita, A. Dazzi, A. Deniset-Besseau, P. Beaunier, F. Goubard, P. H. Aubert, H. Remita, Nat. Mater. 2015, 14, 505–511.
- 15K. Wenderich, G. Mul, Chem. Rev. 2016, 116, 14587–14619.
- 16H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge, J. Ma, B. Wen, S. Zhang, Q. Li, M. Lei, C. Zhang, J. Irawan, L. M. Liu, H. Wu, Nat. Commun. 2017, 8, 1490.
- 17
- 17aM. Yang, L. F. Allard, M. Flytzani-Stephanopoulos, J. Am. Chem. Soc. 2013, 135, 3768–3771;
- 17bB. W. Zhang, T. Zheng, Y. X. Wang, Y. Du, S. Q. Chu, Z. Xia, R. Amal, S. X. Dou, L. Dai, Commun. Chem. 2022, 5, 43.
- 18P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 2016, 352, 797–800.
- 19F. Niu, W. Tu, X. Lu, H. Chi, H. Zhu, X. Zhu, L. Wang, Y. Xiong, Y. Yao, Y. Zhou, Z. Zou, Chem Catal. 2022, 12, 4481–4490.
- 20
- 20aX. Tan, G. Qin, G. Cheng, X. Song, X. Chen, W. Dai, X. Fu, Catal. Sci. Technol. 2020, 10, 6923–6934;
- 20bJ. Huang, L. Dou, J. Li, J. Zhong, M. Li, T. Wang, J. Hazard. Mater. 2021, 403, 123857.
- 21
- 21aX. Yang, Q. Jia, J. Pang, Y. Yang, S. Zheng, J. Jia, Z. Qin, Diamond Relat. Mater. 2022, 128, 109234;
- 21bJ. Marques, T. D. Gomes, M. A. Forte, R. F. Silva, C. J. Tavares, Catal. Today 2019, 326, 36–45.
- 22Y. Chen, M. Xu, J. Wen, Y. Wan, Q. Zhao, X. Cao, Y. Ding, Z. L. Wang, H. Li, Z. Bian, Nat. Sustainability 2021, 4, 618–626.
- 23K. Wang, T. Peng, Z. Wang, H. Wang, X. Chen, W. Dai, X. Fu, Appl. Catal. B 2019, 250, 89–98.
- 24G. Jia, M. Sun, Y. Wang, Y. Shi, L. Zhang, X. Cui, B. Huang, J. C. Yu, Adv. Funct. Mater. 2022, 32, 2206817.
- 25
- 25aX. Ge, P. Zhou, Q. Zhang, Z. Xia, S. Chen, P. Gao, Z. Zhang, L. Gu, S. Guo, Angew. Chem. Int. Ed. 2020, 59, 232–236;
- 25bJ. Chen, Y. Kang, W. Zhang, Z. Zhang, Y. Chen, Y. Yang, L. Duan, Y. Li, W. Li, Angew. Chem. Int. Ed. 2022, 61, e202203022.
- 26S. Yu, X. Cheng, Y. Wang, B. Xiao, Y. Xing, J. Ren, Y. Lu, H. Li, C. Zhuang, G. Chen, Nat. Commun. 2022, 13, 4737.
- 27
- 27aX. Li, Y. Cao, K. Luo, L. Zhang, Y. Bai, J. Xiong, R. N. Zare, J. Ge, Nat. Commun. 2022, 13, 2189;
- 27bB. H. Lee, S. Park, M. Kim, A. K. Sinha, S. C. Lee, E. Jung, W. J. Chang, K. S. Lee, J. H. Kim, S.-P. Cho, H. Kim, K. T. Nam, T. Hyeon, Nat. Mater. 2019, 18, 620–626;
- 27cY. Shen, C. Ren, L. Zheng, X. Xu, R. Long, W. Zhang, Y. Yang, Y. Zhang, Y. Yao, H. Chi, J. Wang, Q. Shen, Y. Xiong, Z. Zou, Y. Zhou, Nat. Commun. 2023, 14, 1117.
- 28C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, J. Phys. Chem. B 2005, 109, 11414–11419.
- 29R. Li, H. Kobayashi, J. Tong, X. Yan, Y. Tang, S. Zou, J. Jin, W. Yi, J. Fan, J. Am. Chem. Soc. 2012, 134, 18286–18294.
- 30M. Jörges, F. Krischer, V. H. Gessner, Science 2022, 378, 1331–1336.
- 31C. C. Chuang, W. C. Wu, M. X. Lee, J. L. Lin, Phys. Chem. Chem. Phys. 2000, 2, 3877–3882.
- 32Y. Chen, S. Guan, H. Ge, X. Chen, Z. Xu, Y. Yue, H. Yamashita, H. Yu, H. Li, Z. Bian, Angew. Chem. Int. Ed. 2022, 61, e202213640.