Thiophene-Containing Covalent Organic Frameworks for Overall Photocatalytic H2O2 Synthesis in Water and Seawater
Corresponding Author
Dr. Jie-Yu Yue
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorLi-Ping Song
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYan-Fei Fan
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
Search for more papers by this authorZi-Xian Pan
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
Search for more papers by this authorDr. Peng Yang
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Yu Ma
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Qing Xu
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210 Shanghai, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Bo Tang
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
Laoshan Laboratory, 266200 Qingdao, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Jie-Yu Yue
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorLi-Ping Song
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYan-Fei Fan
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
Search for more papers by this authorZi-Xian Pan
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
Search for more papers by this authorDr. Peng Yang
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Yu Ma
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Qing Xu
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210 Shanghai, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Bo Tang
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
Laoshan Laboratory, 266200 Qingdao, P. R. China
Search for more papers by this authorGraphical Abstract
Two thiophene-containing covalent organic frameworks were constructed, which enabled overall photocatalytic H2O2 synthesis with high production yields in the absence of sacrificial agents. A synergistic oxygen reduction reaction (ORR) and water oxidation reaction (WOR) occurred under visible light in water and seawater to produce H2O2.
Abstract
H2O2 is a significant chemical widely utilized in the environmental and industrial fields, with growing global demand. Without sacrificial agents, simultaneous photocatalyzed H2O2 synthesis through the oxygen reduction reaction (ORR) and water oxidation reaction (WOR) dual channels from seawater is green and sustainable but still challenging. Herein, two novel thiophene-containing covalent organic frameworks (TD-COF and TT-COF) were first constructed and served as catalysts for H2O2 synthesis via indirect 2e− ORR and direct 2e− WOR channels. The photocatalytic H2O2 production performance can be regulated by adjusting the N-heterocycle modules (pyridine and triazine) in COFs. Notably, with no sacrificial agents, just using air and water as raw materials, TD-COF exhibited high H2O2 production yields of 4060 μmol h−1 g−1 and 3364 μmol h−1 g−1 in deionized water and natural seawater, respectively. Further computational mechanism studies revealed that the thiophene was the primary photoreduction unit for ORR, while the benzene ring (linked to the thiophene by the imine bond) was the central photooxidation unit for WOR. The current work exploits thiophene-containing COFs for overall photocatalytic H2O2 synthesis via ORR and WOR dual channels and provides fresh insight into creating innovative catalysts for photocatalyzing H2O2 synthesis.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202309624-sup-0001-misc_information.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. Ciriminna, L. Albanese, F. Meneguzzo, M. Pagliaro, ChemSusChem 2016, 9, 3374–3381;
- 1bY. Jin, Y. Shi, Z. Chen, R. Chen, X. Chen, X. Zheng, Y. Liu, R. Ding, Appl. Catal. B 2020, 267, 118730.
- 2K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Commun. 2016, 7, 11470.
- 3Y. Guo, C. Dai, Z. Lei, B. Chen, X. Fang, Catal. Today 2016, 276, 36–45.
- 4J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962–6984.
- 5P. V. Mohanan, V. Sangeetha, A. Sabareeswaran, V. Muraleedharan, K. Jithin, U. Vandana, S. B. Varsha, Environ. Sci. Pollut. Res. Int. 2021, 28, 66602–66612.
- 6W. Zhao, P. Yan, B. Li, M. Bahri, L. Liu, X. Zhou, R. Clowes, N. D. Browning, Y. Wu, J. W. Ward, A. I. Cooper, J. Am. Chem. Soc. 2022, 144, 9902–9909.
- 7
- 7aC. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C. V. Chandran, S. Borgmans, S. M. J. Rogge, K. Leus, C. V. Stevens, J. A. Martens, V. Van Speybroeck, E. Breynaert, A. Thomas, P. Van Der Voort, J. Am. Chem. Soc. 2020, 142, 20107–20116;
- 7bL. Zhai, Z. Xie, C.-X. Cui, X. Yang, Q. Xu, X. Ke, M. Liu, L.-B. Qu, X. Chen, L. Mi, Chem. Mater. 2022, 34, 5232–5240;
- 7cH. Wang, C. Yang, F. Chen, G. Zheng, Q. Han, Angew. Chem. Int. Ed. 2022, 61, e202202328;
- 7dY. Zhang, C. Pan, G. Bian, J. Xu, Y. Dong, Y. Zhang, Y. Lou, W. Liu, Y. Zhu, Nat. Energy 2023, 8, 361–371.
- 8
- 8aX. Zeng, Y. Liu, X. Hu, X. Zhang, Green Chem. 2021, 23, 1466–1494;
- 8bH. Cheng, H. Lv, J. Cheng, L. Wang, X. Wu, H. Xu, Adv. Mater. 2022, 34, 2107480.
- 9H. Cheng, J. Cheng, L. Wang, H. Xu, Chem. Mater. 2022, 34, 4259–4273.
- 10
- 10aZ. Chen, D. Yao, C. Chu, S. Mao, Chem. Eng. J. 2023, 451, 138489;
- 10bL. Chen, L. Wang, Y. Wan, Y. Zhang, Z. Qi, X. Wu, H. Xu, Adv. Mater. 2020, 32, 1904433.
- 11
- 11aA. Gopakumar, P. Ren, J. Chen, B. V. Manzolli Rodrigues, H. Y. Vincent Ching, A. Jaworski, S. V. Doorslaer, A. Rokicińska, P. Kuśtrowski, G. Barcaro, S. Monti, A. Slabon, S. Das, J. Am. Chem. Soc. 2022, 144, 2603–2613;
- 11bQ. Wu, J. Cao, X. Wang, Y. Liu, Y. Zhao, H. Wang, Y. Liu, H. Huang, F. Liao, M. Shao, Z. Kang, Nat. Commun. 2021, 12, 483.
- 12
- 12aK. T. Tan, S. Ghosh, Z. Wang, F. Wen, D. Rodríguez-San-Miguel, J. Feng, N. Huang, W. Wang, F. Zamora, X. Feng, A. Thomas, D. Jiang, Nat. Rev. Methods Primers 2023, 3, 1;
- 12bP. J. Waller, F. Gándara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053–3063;
- 12cS. Wang, X. Xu, Y. Yue, K. Yu, Q. Shui, N. Huang, H. Chen, Small Structures 2020, 1, 2000021.
- 13H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou, X. Li, D. Huang, Y. Zhu, Z. Wang, J. Tang, Chem. Soc. Rev. 2020, 49, 4135–4165.
- 14
- 14aT. He, Z. Zhao, R. Liu, X. Liu, B. Ni, Y. Wei, Y. Wu, W. Yuan, H. Peng, Z. Jiang, Y. Zhao, J. Am. Chem. Soc. 2023, 145, 6057–6066;
- 14bZ. Zhao, X. Chen, B. Li, S. Zhao, L. Niu, Z. Zhang, Y. Chen, Adv. Sci. 2022, 9, 2203832;
- 14cZ. Mi, T. Zhou, W. Weng, J. Unruangsri, K. Hu, W. Yang, C. Wang, K. A. Zhang, J. Guo, Angew. Chem. Int. Ed. 2021, 60, 9642–9649;
- 14dY. Wang, W. Hao, H. Liu, R. Chen, Q. Pan, Z. Li, Y. Zhao, Nat. Commun. 2022, 13, 100.
- 15
- 15aM. Kou, Y. Wang, Y. Xu, L. Ye, Y. Huang, B. Jia, H. Li, J. Ren, Y. Deng, J. Chen, Y. Zhou, K. Lei, L. Wang, W. Liu, H. Huang, T. Ma, Angew. Chem. Int. Ed. 2022, 61, e202200413;
- 15bD. Chen, W. Chen, Y. Wu, L. Wang, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 2023, 62, e202217479;
- 15cP. Das, J. Roeser, A. Thomas, Angew. Chem. Int. Ed. 2023, 62, e202304349;
- 15dY. Liu, W.-K. Han, W. Chi, Y. Mao, Y. Jiang, X. Yan, Z.-G. Gu, Appl. Catal. B 2023, 331, 122691;
- 15eQ. Zhi, W. Liu, R. Jiang, X. Zhan, Y. Jin, X. Chen, X. Yang, K. Wang, W. Cao, D. Qi, J. Jiang, J. Am. Chem. Soc. 2022, 144, 21328–21336;
- 15fY. Luo, B. Zhang, C. Liu, D. Xia, X. Ou, Y. Cai, Y. Zhou, J. Jiang, B. Han, Angew. Chem. Int. Ed. 2023, 62, e202305355.
- 16
- 16aJ. N. Chang, Q. Li, J. W. Shi, M. Zhang, L. Zhang, S. Li, Y. Chen, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 2023, 62, e202218868;
- 16bP. Das, G. Chakraborty, J. Roeser, S. Vogl, J. Rabeah, A. Thomas, J. Am. Chem. Soc. 2023, 145, 2975–2984.
- 17
- 17aC. Chu, Q. Zhu, Z. Pan, S. Gupta, D. Huang, Y. Du, S. Weon, Y. Wu, C. Muhich, E. Stavitski, K. Domen, J.-H. Kim, PANS 2020, 117, 6376–6382;
- 17bY. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal. 2016, 6, 7021–7029;
- 17cW. Chen, L. Wang, D. Mo, F. He, Z. Wen, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 2020, 59, 16902–16909;
- 17dJ.-Y. Yue, Y.-T. Wang, X.-L. Ding, Y.-F. Fan, L.-P. Song, P. Yang, Y. Ma, B. Tang, Mater. Chem. Front. 2022, 6, 3748–3754.
- 18V. S. Vyas, F. Haase, L. Stegbauer, G. Savasci, F. Podjaski, C. Ochsenfeld, B. V. Lotsch, Nat. Commun. 2015, 6, 8508.
- 19G. Barbarella, M. Melucci, G. Sotgiu, Adv. Mater. 2005, 17, 1581–1593.
- 20
- 20aJ. Wu, G. Li, J. Fang, X. Guo, L. Zhu, B. Guo, Y. Wang, G. Zhang, L. Arunagiri, F. Liu, H. Yan, M. Zhang, Y. Li, Nat. Commun. 2020, 11, 4612;
- 20bC. Han, S. Xiang, S. Jin, L.-W. Luo, C. Zhang, C. Yan, J.-X. Jiang, J. Mater. Chem. A 2022, 10, 5255–5261.
- 21
- 21aT. Boruah, S. K. Das, G. Kumar, S. Mondal, R. S. Dey, Chem. Commun. 2022, 58, 5506–5509;
- 21bL. Liu, X.-X. Wang, X. Wang, G.-J. Xu, Y.-F. Zhao, M.-L. Wang, J.-M. Lin, R.-S. Zhao, Y. Wu, J. Hazard. Mater. 2021, 403, 123917.
- 22D. Zhu, R. Verduzco, ACS Appl. Mater. Interfaces 2020, 12, 33121–33127.
- 23
- 23aM. Deng, J. Sun, A. Laemont, C. Liu, L. Wang, L. Bourda, J. Chakraborty, K. Van Hecke, R. Morent, N. De Geyter, K. Leus, H. Chen, P. Van Der Voort, Green Chem. 2023, 25, 3069–3076;
- 23bM. Alves Fávaro, D. Ditz, J. Yang, S. Bergwinkl, A. C. Ghosh, M. Stammler, C. Lorentz, J. Roeser, E. A. Quadrelli, A. Thomas, R. Palkovits, J. Canivet, F. M. Wisser, ACS Appl. Mater. Interfaces 2022, 14, 14182–14192.
- 24
- 24aY. Nosaka, A. Y. Nosaka, Chem. Rev. 2017, 117, 11302–11336;
- 24bW. H. Koppenol, D. M. Stanbury, P. L. Bounds, Free Radical Biol. Med. 2010, 49, 317–322.
- 25Y.-X. Ye, J. Pan, Y. Shen, M. Shen, H. Yan, J. He, X. Yang, F. Zhu, J. Xu, J. He, G. Ouyang, Proc. Natl. Acad. Sci. USA 2021, 118, e2115666118.
- 26J. Deng, Y. Li, Y. Xiao, K. Feng, C. Lu, K. Nie, X. Lv, H. Xu, J. Zhong, ACS Catal. 2022, 12, 7833–7842.
- 27C. Zhang, L. Yuan, C. Liu, Z. Li, Y. Zou, X. Zhang, Y. Zhang, Z. Zhang, G. Wei, C. Yu, J. Am. Chem. Soc. 2023, 145, 7791–7799.
- 28X. Zhang, J. Yu, W. Macyk, S. Wageh, A. A. Al-Ghamdi, L. Wang, Adv. Sustainable Syst. 2023, 7, 2200113.
- 29
- 29aM.-h. Shao, P. Liu, R. R. Adzic, J. Am. Chem. Soc. 2006, 128, 7408–7409;
- 29bY. He, G. Liu, Z. Liu, J. Bi, Y. Yu, L. Li, ACS Energy Lett. 2023, 8, 1857–1863.
- 30T. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, J. Chem. Phys. 2020, 152, 194103.
- 31
- 31aC. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170;
- 31bT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.