Building Block-Inspired Hybrid Perovskite Derivatives for Ferroelectric Channel Layers with Gate-Tunable Memory Behavior
Haojie Xu
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorFapeng Sun
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorWuqian Guo
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorShiguo Han
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorYi Liu
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorQingshun Fan
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorLiwei Tang
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorProf. Wei Liu
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorProf. Junhua Luo
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhihua Sun
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorHaojie Xu
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorFapeng Sun
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorWuqian Guo
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorShiguo Han
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorYi Liu
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorQingshun Fan
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorLiwei Tang
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorProf. Wei Liu
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorProf. Junhua Luo
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhihua Sun
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorGraphical Abstract
Abstract
Ferroelectric photovoltaics driven by spontaneous polarization (Ps) holds a promise for creating the next-generation optoelectronics, spintronics and non-volatile memories. However, photoactive ferroelectrics are quite scarce in single homogeneous phase, owing to the severe Ps fatigue caused by leakage current of photoexcited carriers. Here, through combining inorganic and organic components as building blocks, we constructed a series of ferroelectric semiconductors of 2D hybrid perovskites, (HA)2(MA)n-1PbnBr3n+1 (n=1–5; HA=hexylamine and MA=methylamine). It is intriguing that their Curie temperatures are greatly enhanced by reducing the thickness of inorganic frameworks from MAPbBr3 (n=∞, Tc=239 K) to n=2 (Tc=310 K, ΔT=71 K). Especially, on account of the coupling of room-temperature ferroelectricity (Ps≈1.5 μC/cm2) and photoconductivity, n=3 crystal wafer was integrated as channel field effect transistor that shows excellent a large short-circuit photocurrent ≈19.74 μA/cm2. Such giant photocurrents can be modulated through manipulating gate voltage in a wide range (±60 V), exhibiting gate-tunable memory behaviors of three current states (“-1/0/1” states). We believe that this work sheds light on further exploration of ferroelectric materials toward new non-volatile memory devices.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202309416-sup-0001-1L-FEP.cif313.4 KB | Supporting Information |
anie202309416-sup-0001-1L-PEP.cif128.9 KB | Supporting Information |
anie202309416-sup-0001-2L-FEP.cif188.2 KB | Supporting Information |
anie202309416-sup-0001-2L-PEP.cif207.2 KB | Supporting Information |
anie202309416-sup-0001-3L-FEP.cif190.6 KB | Supporting Information |
anie202309416-sup-0001-3L-PEP.cif256.7 KB | Supporting Information |
anie202309416-sup-0001-4L-FEP.cif294.6 KB | Supporting Information |
anie202309416-sup-0001-4L-PEP.cif239.1 KB | Supporting Information |
anie202309416-sup-0001-5L-FEP.cif318.9 KB | Supporting Information |
anie202309416-sup-0001-5L-PEP.cif356.4 KB | Supporting Information |
anie202309416-sup-0001-misc_information.pdf3.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aI. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, A. M. Rappe, Nature 2013, 503, 509–512;
- 1bY. Y. Tang, Y. L. Zeng, R. G. Xiong, J. Am. Chem. Soc. 2022, 144, 8633–8640;
- 1cC. Paillard, X. Bai, I. C. Infante, M. Guennou, G. Geneste, M. Alexe, J. Kreisel, B. Dkhil, Adv. Mater. 2016, 28, 5153–5168.
- 2
- 2aY. Dang, X. Tao, Matter 2022, 5, 2659–2684;
- 2bZ. Sun, X. Liu, T. Khan, C. Ji, M. A. Asghar, S. Zhao, L. Li, M. Hong, J. Luo, Angew. Chem. Int. Ed. 2016, 55, 6545–6550;
- 2cY. Liu, S. Han, J. Wang, Y. Ma, W. Guo, X. Y. Huang, J. H. Luo, M. Hong, Z. Sun, J. Am. Chem. Soc. 2021, 143, 2130–2137.
- 3
- 3aS. Han, M. Li, Y. Liu, W. Guo, M. C. Hong, Z. Sun, J. Luo, Nat. Commun. 2021, 12, 284;
- 3bT. T. Sha, Y. A. Xiong, Q. Pan, X. G. Chen, X. J. Song, J. Yao, S. R. Miao, Z. Y. Jing, Z. J. Feng, Y. M. You, R. G. Xiong, Adv. Mater. 2019, 31, e1901843;
- 3cS. Han, Y. Ma, L. Hua, L. Tang, B. Wang, Z. Sun, J. Luo, J. Am. Chem. Soc. 2022, 144, 20315–20322;
- 3dC. C. Fan, X. B. Han, B. D. Liang, C. Shi, L. P. Miao, C. Y. Chai, C. D. Liu, Q. Ye, W. Zhang, Adv. Mater. 2022, 34, e2204119.
- 4R. Guo, L. You, Y. Zhou, Z. S. Lim, X. Zou, L. Chen, R. Ramesh, J. Wang, Nat. Commun. 2013, 4, 1990.
- 5
- 5aA. M. Glass, D. von der Linde, T. J. Negran, Appl. Phys. Lett. 1974, 25, 233–235;
- 5bT. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S. W. Cheong, Science 2009, 324, 63–66;
- 5cY. Zhou, Y. Huang, X. Xu, Z. Fan, J. B. Khurgin, Q. Xiong, Appl. Phys. Rev. 2020, 7, 041313;
- 5dC. F. Wang, H. Li, Q. Ji, C. Ma, L. Liu, H. Y. Ye, B. Cao, G. Yuan, H. F. Lu, D. W. Fu, M. G. Ju, J. Wang, K. Zhao, Y. Zhang, Adv. Funct. Mater. 2022, 32, 2205918.
- 6
- 6aX. Han, Y. Ji, Y. Yang, Adv. Funct. Mater. 2022, 32, 2109625;
- 6bL. Wu, Y. Yang, Adv. Mater. Interfaces 2022, 9, 2201415;
- 6cY. Li, J. Fu, X. Mao, C. Chen, H. Liu, M. Gong, H. Zeng, Nat. Commun. 2021, 12, 5896;
- 6dX. Liu, S. Wang, P. Long, L. Li, Y. Peng, Z. Xu, S. Han, Z. Sun, M. Hong, J. Luo, Angew. Chem. Int. Ed. Engl. 2019, 58, 14504–14508.
- 7
- 7aX. He, Y. Deng, D. Ouyang, N. Zhang, J. Wang, A. A. Murthy, I. Spanopoulos, S. M. Islam, Q. Tu, G. Xing, Y. Li, V. P. Dravid, T. Zhai, Chem. Rev. 2023, 123, 1207–1261;
- 7bY. Zhou, I. Poli, D. Meggiolaro, F. De Angelis, A. Petrozza, Nat. Rev. Mater. 2021, 6, 986–1002;
- 7cX. Zhang, L. Li, Z. Sun, J. Luo, Chem. Soc. Rev. 2019, 48, 517–539;
- 7dW. Guo, H. Xu, Y. Ma, Y. Liu, B. Wang, L. Tang, L. Hua, J. Luo, Z. Sun, Adv. Funct. Mater. 2022, 32, 2207854.
- 8
- 8aN. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476–480;
- 8bH. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, Science 2015, 350, 1222–1225;
- 8cJ. Wang, S. P. Senanayak, J. Liu, Y. Hu, Y. Shi, Z. Li, C. Zhang, B. Yang, L. Jiang, D. Di, A. V. Ievlev, O. S. Ovchinnikova, T. Ding, H. Deng, L. Tang, Y. Guo, J. Wang, K. Xiao, D. Venkateshvaran, L. Jiang, D. Zhu, H. Sirringhaus, Adv. Mater. 2019, 31, e1902618;
- 8dZ. R. Gao, X. F. Sun, Y. Y. Wu, Y. Z. Wu, H. L. Cai, X. S. Wu, J. Phys. Chem. Lett. 2019, 10, 2522–2527;
- 8eA. Liang, J. Gonzalez-Platas, R. Turnbull, C. Popescu, I. Fernandez-Guillen, R. Abargues, P. P. Boix, L. T. Shi, D. Errandonea, J. Am. Chem. Soc. 2022, 144, 20099–20108.
- 9
- 9aL. Li, Z. Sun, P. Wang, W. Hu, S. Wang, C. Ji, M. Hong, J. Luo, Angew. Chem. Int. Ed. 2017, 56, 12150–12154;
- 9bZ. Wu, C. Ji, L. Li, J. Kong, Z. Sun, S. Zhao, S. Wang, M. Hong, J. Luo, Angew. Chem. Int. Ed. Engl. 2018, 57, 8140–8143.
- 10
- 10aY. Chen, C. Gao, T. Yang, W. Li, H. Xu, Z. Sun, Chin. J. Struct. Chem. 2022, 41, 41313–41323;
- 10bP. Siwach, P. Sikarwar, J. S. Halpati, A. K. Chandiran, J. Mater. Chem. A 2022, 10, 8719–8738;
- 10cH. Xu, S. Han, J. Luo, Z. Sun, Acta Chim. Sin. 2021, 79, 23–35.
- 11Z. Wu, W. Zhang, H. Ye, Y. Yao, X. Liu, L. Li, C. Ji, J. Luo, J. Am. Chem. Soc. 2021, 143, 7593–7598.
- 12
- 12aH. Y. Zhang, Z. X. Zhang, X. J. Song, X. G. Chen, R. G. Xiong, J. Am. Chem. Soc. 2020, 142, 20208–20215;
- 12bH. Y. Liu, H. Y. Zhang, X. G. Chen, R. G. Xiong, J. Am. Chem. Soc. 2020, 142, 15205–15218.
- 13
- 13aX. Li, J. M. Hoffman, M. G. Kanatzidis, Chem. Rev. 2021, 121, 2230–2291;
- 13bJ. Di, J. Chang, S. Liu, EcoMat 2020, 2, e12036.
- 14
- 14aA. A. Koegel, I. W. H. Oswald, C. Rivera, S. L. Miller, M. J. Fallon, T. R. Prisk, C. M. Brown, J. R. Neilson, Chem. Mater. 2022, 34, 8316–8323;
- 14bM. B. Fridriksson, S. Maheshwari, F. C. Grozema, J. Phys. Chem. C 2020, 124, 22096–22104.
- 15Deposition numbers 2255122, 2255123, 2255124, 2255125, 2255126, 2255127, 2255128, 2255129, 2255130, and 2255131 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 16
- 16aK. Aizu, Phys. Rev. B 1970, 2, 754–772;
- 16bH. Xu, W. Guo, J. Wang, Y. Ma, S. Han, Y. Liu, L. Lu, X. Pan, J. Luo, Z. Sun, J. Am. Chem. Soc. 2021, 143, 14379–14385.
- 17
- 17aH. Y. Zhang, Z. X. Zhang, X. G. Chen, X. J. Song, Y. Zhang, R. G. Xiong, J. Am. Chem. Soc. 2021, 143, 1664–1672;
- 17bL. P. Miao, N. Ding, N. Wang, C. Shi, H. Y. Ye, L. Li, Y. F. Yao, S. Dong, Y. Zhang, Nat. Mater. 2022, 21, 1158–1164;
- 17cZ. X. Zhang, X. J. Song, Y. R. Li, X. G. Chen, Y. Zhang, H. P. Lv, Y. Y. Tang, R. G. Xiong, H. Y. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202210809.
- 18
- 18aY. Jiang, E. Parsonnet, A. Qualls, W. Zhao, S. Susarla, D. Pesquera, A. Dasgupta, M. Acharya, H. Zhang, T. Gosavi, C. C. Lin, D. E. Nikonov, H. Li, I. A. Young, R. Ramesh, L. W. Martin, Nat. Mater. 2022, 21, 779–785;
- 18bA. V. Bune, V. M. Fridkin, S. Ducharme, L. M. Blinov, S. P. Palto, A. V. Sorokin, S. G. Yudin, A. Zlatkin, Nature 1998, 391, 874–877.
- 19
- 19aZ. Liu, K. Shu, Y. Yang, H. Yu, Y. Huang, W. Gao, X. Zhang, F. Wu, J. Li, H. Dong, N. Huo, Adv. Opt. Mater. 2023, 11, 2202646;
- 19bH.-C. Cheng, G. Wang, D. Li, Q. He, A. Yin, Y. Liu, H. Wu, M. Ding, Y. Huang, X. Duan, Nano Lett. 2016, 16, 367–373.