Atomization-Induced High Intrinsic Activity of a Biocompatible MgAl-LDH Supported Ru Single-Atom Nanozyme for Efficient Radicals Scavenging
Dr. Bingqing Wang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYingyan Fang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorXu Han
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorRuntao Jiang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
Search for more papers by this authorLin Zhao
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
Search for more papers by this authorXiang Yang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
Search for more papers by this authorJing Jin
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
Search for more papers by this authorProf. Aijuan Han
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Junfeng Liu
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
Search for more papers by this authorDr. Bingqing Wang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorYingyan Fang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorXu Han
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorRuntao Jiang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
Search for more papers by this authorLin Zhao
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
Search for more papers by this authorXiang Yang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
Search for more papers by this authorJing Jin
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
Search for more papers by this authorProf. Aijuan Han
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Junfeng Liu
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
Search for more papers by this authorGraphical Abstract
A biocompatible MgAl-layered double hydroxide (LDH) supported Ru single-atom nanozyme (Ru1/LDH SAE) was developed to mimic multi-enzymes. Ru1/LDH SAE shows high intrinsic peroxidase-like catalytic activity, which outperforms the Ru nanoclusters nanozyme by a factor of 20 and surpasses most SAEs reported so far.
Abstract
Developing efficient nanozymes to mimic natural enzymes for scavenging reactive radicals remains a significant challenge owing to the insufficient activity of conventional nanozymes. Herein, we report a novel Ru single-atom nanozyme (SAE), featuring atomically dispersed Ru atoms on a biocompatible MgAl-layered double hydroxide (Ru1/LDH). The prepared Ru1/LDH SAE shows high intrinsic peroxidase (POD)-like catalytic activity, which outperforms the Ru nanoclusters (NCs) nanozyme by a factor of 20 and surpasses most SAEs. The density functional theory calculations reveal that the high intrinsic POD-like activity of Ru1/LDH can be attributed to a heterolytic path of H2O2 dissociation on the single Ru sites, which requires lower free energy (0.43 eV) compared to the homolytic path dissociation on Ru NC (0.63 eV). In addition, the Ru1/LDH SAE shows excellent multiple free radicals scavenging ability, including superoxide anion radical (O2⋅−), hydroxyl radical (⋅OH), nitric oxide radical (NO⋅) and 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH⋅). Given the advantages of Ru1/LDH with high enzymatic activities, biosafety, and ease to scale up, it paves the way for exploring SAEs in the practical biological immunity system.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202307133-sup-0001-misc_information.pdf1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Wu, X. Wang, Q. Wang, Z. Lou, S. Li, Y. Zhu, L. Qin, H. Wei, Chem. Soc. Rev. 2019, 48, 1004–1076;
- 1bD. Jiang, D. Ni, Z. T. Rosenkrans, P. Huang, X. Yan, W. Cai, Chem. Soc. Rev. 2019, 48, 3683–3704;
- 1cL. Pasquato, P. Pengo, P. Scrimin, Supramol. Chem. 2005, 17, 163–171.
- 2J. Yao, Y. Cheng, M. Zhou, S. Zhao, S. Lin, X. Wang, J. Wu, S. Li, H. Wei, Chem. Sci. 2018, 9, 2927–2933.
- 3L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, Nat. Nanotechnol. 2007, 2, 577–583.
- 4
- 4aY. Zhu, W. Wang, J. Cheng, Y. Qu, Y. Dai, M. Liu, J. Yu, C. Wang, H. Wang, S. Wang, C. Zhao, Y. Wu, Y. Liu, Angew. Chem. Int. Ed. 2021, 60, 9480–9488;
- 4bW. Shen, T. Hu, X. Liu, J. Zha, F. Meng, Z. Wu, Z. Cui, Y. Yang, H. Li, Q. Zhang, L. Gu, R. Liang, C. Tan, Nat. Commun. 2022, 13, 3384.
- 5L. Jiao, H. Yan, Y. Wu, W. Gu, C. Zhu, D. Du, Y. Lin, Angew. Chem. Int. Ed. 2020, 59, 2565–2576.
- 6
- 6aB. Xu, H. Wang, W. Wang, L. Gao, S. Li, X. Pan, H. Wang, H. Yang, X. Meng, Q. Wu, L. Zheng, S. Chen, X. Shi, K. Fan, X. Yan, H. Liu, Angew. Chem. Int. Ed. 2019, 58, 4911–4916;
- 6bT. Zhang, F. Wang, C. Yang, X. Han, C. Liang, Z. Zhang, Y. Li, A. Han, J. Liu, B. Liu, Chem Catal. 2022, 2, 836–852;
- 6cT. Zhang, X. Han, H. Yang, A. Han, E. Hu, Y. Li, X. Q. Yang, L. Wang, J. Liu, B. Liu, Angew. Chem. Int. Ed. 2020, 59, 12055–12061;
- 6dX. Han, T. Zhang, X. Wang, Z. Zhang, Y. Li, Y. Qin, B. Wang, A. Han, J. Liu, Nat. Commun. 2022, 13, 2900.
- 7R. Li, D. Wang, Nano Res. 2022, 15, 6888–6923.
- 8
- 8aB. Xu, S. Li, L. Zheng, Y. Liu, A. Han, J. Zhang, Z. Huang, H. Xie, K. Fan, L. Gao, H. Liu, Adv. Mater. 2022, 34, 2107088;
- 8bM. Lu, J. Wang, G. Ren, F. Qin, Z. Zhao, K. Li, W. Chen, Y. Lin, Nano Res. 2022, 15, 8804–8809;
- 8cX. Xia, X. Wang, X. Han, M. Qi, Y. Gao, J. Liao, X. He, K. Pan, Q. Cheng, Q. Wang, Sci. China Mater. 2021, 64, 3079;
- 8dY. Zhu, W. Wang, P. Gong, Y. Zhao, Y. Pan, J. Zou, R. Ao, J. Wang, H. Cai, H. Huang, M. Yu, H. Wang, L. Lin, X. Chen, Y. Wu, ACS Nano 2023, 17, 3064–3076;
- 8eY. Chen, B. Jiang, H. Hao, H. Li, C. Qiu, X. Liang, Q. Qu, Z. Zhang, R. Gao, D. Duan, S. Ji, D. Wang, M. Liang, Angew. Chem. Int. Ed. 2023, 62, 202301879.
- 9L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Sci. Adv. 2019, 5, 5490.
- 10Y. Wang, G. Jia, X. Cui, X. Zhao, Q. Zhang, L. Gu, L. Zheng, L. H. Li, Q. Wu, D. J. Singh, D. Matsumura, T. Tsuji, Y. T. Cui, J. Zhao, W. Zheng, Chem 2021, 7, 436–449.
- 11
- 11aJ. Zhang, T. S. Wu, H. V. Thang, K. Y. Tseng, X. Hao, B. Xu, H. Y. T. Chen, Y. K. Peng, Small 2022, 18, 2104844;
- 11bR. Yan, S. Sun, J. Yang, W. Long, J. Wang, X. Mu, Q. Li, W. Hao, S. Zhang, H. Liu, Y. Gao, L. Ouyang, J. Chen, S. Liu, X. D. Zhang, D. Ming, ACS Nano 2019, 13, 11552–11560.
- 12Y. Zhao, L. Zheng, R. Shi, S. Zhang, X. Bian, F. Wu, X. Cao, G. I. N. Waterhouse, T. Zhang, Adv. Energy Mater. 2020, 10, 2002199.
- 13
- 13aT. Zhang, J. Jin, J. Chen, Y. Fang, X. Han, J. Chen, Y. Li, Y. Wang, J. Liu, L. Wang, Nat. Commun. 2022, 13, 6875;
- 13bJ. Zhang, H. Hu, Z. Li, X. Lou, Angew. Chem. Int. Ed. 2016, 55, 3982–3986;
- 13cL. Zhou, M. Shao, C. Zhang, J. Zhao, S. He, D. Rao, M. Wei, D. G. Evans, X. Duan, Adv. Mater. 2017, 29, 1604080;
- 13dY. Yang, T. Hu, Y. Bian, F. Meng, S. Yu, H. Li, Q. Zhang, L. Gu, X. Weng, C. Tan, R. Liang, Adv. Mater. 2023, 35, 2211205.
- 14
- 14aV. K. Ameena Shirin, R. Sankar, A. P. Johnson, H. V. Gangadharappa, K. Pramod, J. Controlled Release 2021, 330, 398–426;
- 14bJ. Yu, K. Ruengkajorn, D. G. Crivoi, Nat. Commun. 2019, 10, 2398;
- 14cS. Bai, T. Li, H. Wang, Chem. Eng. J. 2021, 419, 129390;
- 14dL. Yang, J. Sun, Q. Liu, Adv. Sci. 2019, 6, 1802012.
- 15
- 15aZ. Cao, B. Li, L. Sun, L. Li, Z. P. Xu, Z. Gu, Small Methods 2020, 4, 1900343;
- 15bJ. Jin, Y. Fang, T. Zhang, A. Han, B. Wang, J. Liu, Sci. China Mater. 2022, 65, 2704.
- 16Y. Zhao, F. Li, R. Zhang, D. G. Evans, X. Duan, Chem. Mater. 2002, 14, 4286–4291.
- 17J. Jin, X. Han, Y. Fang, Z. Zhang, Y. Li, T. Zhang, A. Han, J. Liu, Adv. Funct. Mater. 2022, 32, 2109218.
- 18S. Yin, W. Tu, Y. Sheng, Y. Du, M. Kraft, A. Borgna, R. Xu, Adv. Mater. 2018, 30, 1705106.
- 19H. Funke, A. C. Scheinost, M. Chukalina, Phys. Rev. B 2005, 71, 094110.
- 20J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Nat. Commun. 2017, 8, 14969.
- 21L. Luo, L. Li, C. Cong, Y. He, Z. Hao, D. Gao, Sci. China Mater. 2021, 64, 1021.
- 22H. Liu, D. Chen, L. Li, T. Liu, L. Tan, X. Wu, F. Tang, Angew. Chem. Int. Ed. 2011, 50, 891–895.
- 23L. Liu, D. M. Meira, ACS Catal. 2019, 9, 10626.
- 24X. Xia, J. Zhang, N. Lu, M. J. Kim, K. Ghale, Y. Xu, E. McKenzie, J. Liu, H. Ye, ACS Nano 2015, 9, 9994–10004.
- 25
- 25aP. Zhang, D. Sun, A. Cho, S. Weon, S. Lee, J. Lee, J. W. Han, D. P. Kim, W. Choi, Nat. Commun. 2019, 10, 940;
- 25bJ. Chen, Q. Ma, M. Li, D. Chao, L. Huang, W. Wu, Y. Fang, S. Dong, Nat. Commun. 2021, 12, 3375.
- 26H. Liu, Y. Li, S. Sun, Q. Xin, S. Liu, X. Mu, X. Yuan, K. Chen, H. Wang, K. Varga, W. Mi, J. Yang, X. D. Zhang, Nat. Commun. 2021, 12, 114.
- 27H. Chen, M. Zhang, Z. Qu, B. Xie, Food Chem. 2008, 106, 559–563.
- 28H. Huang, S. Tu, C. Zeng, T. Zhang, A. H. Reshak, Y. Zhang, Angew. Chem. Int. Ed. 2017, 56, 11860–11864.
- 29N. Singh, M. A. Savanur, S. Srivastava, P. D. Silva, G. Mugesh, Angew. Chem. Int. Ed. 2017, 56, 14267–14271.
- 30S. Xiang, Z. Fan, Z. Ye, T. Zhu, D. Shi, S. Ye, Z. Hou, X. Chen, Nano Res. 2022, 15, 907–918.
- 31Z. Wang, Y. Zhang, E. Ju, Z. Liu, F. Cao, Z. Chen, J. Ren, X. Qu, Nat. Commun. 2018, 9, 3334.
- 32V. Calabrese, C. Mancuso, M. Calvani, E. Rizzarelli, D. A. Butterfield, A. M. Giuffrida Stella, Nat. Rev. Neurosci. 2007, 8, 766–775.
- 33R. Lo Scalzo, Food Chem. 2008, 107, 40–43.
- 34F. Cao, L. Zhang, Y. You, L. Zheng, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2020, 59, 5108–5115.