Uncovering Aging Chemistry of Perovskite Precursor Solutions and Anti-aging Mechanism of Additives
Dr. Yanyan Zhang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorZhi Xing
College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorBaojin Fan
College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorCorresponding Author
Dr. Zhigang Ni
College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 China
Search for more papers by this authorCorresponding Author
Prof. Fuyi Wang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Xiaotian Hu
College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorCorresponding Author
Prof. Yiwang Chen
College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031 China
National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330032 China
Search for more papers by this authorDr. Yanyan Zhang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorZhi Xing
College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorBaojin Fan
College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorCorresponding Author
Dr. Zhigang Ni
College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 China
Search for more papers by this authorCorresponding Author
Prof. Fuyi Wang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Xiaotian Hu
College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031 China
Search for more papers by this authorCorresponding Author
Prof. Yiwang Chen
College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031 China
National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330032 China
Search for more papers by this authorGraphical Abstract
In situ liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS) is established as a molecular probe to unveil the aging chemistry of perovskite precursor solutions. In addition to uncovering the molecular mechanism of chemical aging reactions, it is demonstrated that the structure and stability difference of precursor-additive interactions determines the anti-aging effects of additives.
Abstract
The aging of precursor solutions is the major stumbling block for the commercialization of perovskite solar cells (PSCs). Herein, for the first time we used the state-of-the-art in situ liquid time-of-flight secondary ion mass spectrometry to molecularly explore the perovskite precursor solution chemistry. We identified that the methylammonium and formamidinium cations and the I− anion are the motivators of the aging chemistry. Further, we introduced two kinds of Lewis bases, triethyl phosphate (TP) and ethyl ethanesulfonate (EE), as new additives in the solution and unraveled that both of them can protect the reactive cations from aging through weak interactions. Significantly, TP is superior to EE in enhancing long-term solution stability as it can well-maintain the internal interaction structures within the solution phase. The PSC derived from a fresh TP-doped solution delivered a high power conversion efficiency of 23.06 %, 92.23 % of which remained in that from a 21-day-old solution.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202215799-sup-0001-misc_information.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. J. Eggimann, J. B. Patel, M. B. Johnston, L. M. Herz, Nat. Commun. 2020, 11, 5525;
- 1bS. Reichert, Q. An, Y.-W. Woo, A. Walsh, Y. Vaynzof, C. Deibel, Nat. Commun. 2020, 11, 6098;
- 1cG. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 982–988.
- 2
- 2aY. Hou, E. Aydin, M. De Bastiani, C. Xiao, F. H. Isikgor, D.-J. Xue, B. Chen, H. Chen, B. Bahrami, A. H. Chowdhury, A. Johnston, S.-W. Baek, Z. Huang, M. Wei, Y. Dong, J. Troughton, R. Jalmood, A. J. Mirabelli, T. G. Allen, E. Van Kerschaver, M. I. Saidaminov, D. Baran, Q. Qiao, K. Zhu, S. De Wolf, E. H. Sargent, Science 2020, 367, 1135–1140;
- 2bH. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, Nature 2021, 598, 444–450;
- 2cM. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, S.-I. Mo, Y.-K. Kim, H. Lee, N. G. An, S. Cho, W. R. Tress, S. M. Zakeeruddin, A. Hagfeldt, J. Y. Kim, M. Grätzel, D. S. Kim, Science 2022, 375, 302–306.
- 3
- 3aM. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643–647;
- 3bA. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051;
- 3cJ. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316–319;
- 3dZ. Wei, H. Chen, K. Yan, S. Yang, Angew. Chem. Int. Ed. 2014, 53, 13239–13243; Angew. Chem. 2014, 126, 13455–13459;
- 3eS.-G. Li, K.-J. Jiang, M.-J. Su, X.-P. Cui, J.-H. Huang, Q.-Q. Zhang, X.-Q. Zhou, L.-M. Yang, Y.-L. Song, J. Mater. Chem. A 2015, 3, 9092–9097;
- 3fA. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley, D. G. Lidzey, Energy Environ. Sci. 2014, 7, 2944–2950.
- 4T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes, D. Cahen, Nat. Rev. Mater. 2016, 1, 15007.
- 5
- 5aA. Younis, C.-H. Lin, X. Guan, S. Shahrokhi, C.-Y. Huang, Y. Wang, T. He, S. Singh, L. Hu, J. R. D. Retamal, J.-H. He, T. Wu, Adv. Mater. 2021, 33, 2005000;
- 5bA. Rizzo, A. Listorti, S. Colella, Chem 2022, 8, 31–45.
- 6H. Min, G. Kim, M. J. Paik, S. Lee, W. S. Yang, M. Jung, S. I. Seok, Adv. Energy Mater. 2019, 9, 1803476.
- 7X. Wang, Y. Fan, L. Wang, C. Chen, Z. Li, R. Liu, H. Meng, Z. Shao, X. Du, H. Zhang, G. Cui, S. Pang, Chem 2020, 6, 1369–1378.
- 8J. Zhu, D. H. Kim, J. D. Kim, D. G. Lee, W. B. Kim, S. w. Chen, J. Y. Kim, J. M. Lee, H. Lee, G. S. Han, T. K. Ahn, H. S. Jung, ACS Energy Lett. 2021, 6, 3425–3434.
- 9S. P. Harvey, J. Messinger, K. Zhu, J. M. Luther, J. J. Berry, Adv. Energy Mater. 2020, 10, 1903674.
- 10
- 10aY. Liu, A. V. Ievlev, N. Borodinov, M. Lorenz, K. Xiao, M. Ahmadi, B. Hu, S. V. Kalinin, O. S. Ovchinnikova, Adv. Funct. Mater. 2021, 31, 2008777;
- 10bY. Liu, N. Borodinov, M. Lorenz, M. Ahmadi, S. V. Kalinin, A. V. Ievlev, O. S. Ovchinnikova, Adv. Sci. 2020, 7, 2001176.
- 11
- 11aX. Meng, Z. Cai, Y. Zhang, X. Hu, Z. Xing, Z. Huang, Z. Huang, Y. Cui, T. Hu, M. Su, X. Liao, L. Zhang, F. Wang, Y. Song, Y. Chen, Nat. Commun. 2020, 11, 3016;
- 11bX. Meng, X. Hu, Y. Zhang, Z. Huang, Z. Xing, C. Gong, L. Rao, H. Wang, F. Wang, T. Hu, L. Tan, Y. Song, Y. Chen, Adv. Funct. Mater. 2021, 31, 2106460;
- 11cB. Fan, J. Xiong, Y. Zhang, C. Gong, F. Li, X. Meng, X. Hu, Z. Yuan, F. Wang, Y. Chen, Adv. Mater. 2022, 34, 2201840.
- 12
- 12aJ. Kim, B.-w. Park, J. Baek, J. S. Yun, H.-W. Kwon, J. Seidel, H. Min, S. Coelho, S. Lim, S. Huang, K. Gaus, M. A. Green, T. J. Shin, A. W. Y. Ho-baillie, M. G. Kim, S. I. Seok, J. Am. Chem. Soc. 2020, 142, 6251–6260;
- 12bL. Zhao, Q. Li, C.-H. Hou, S. Li, X. Yang, J. Wu, S. Zhang, Q. Hu, Y. Wang, Y. Zhang, Y. Jiang, S. Jia, J.-J. Shyue, T. P. Russell, Q. Gong, X. Hu, R. Zhu, J. Am. Chem. Soc. 2022, 144, 1700–1708;
- 12cS. P. Harvey, Z. Li, J. A. Christians, K. Zhu, J. M. Luther, J. J. Berry, ACS Appl. Mater. Interfaces 2018, 10, 28541–28552;
- 12dJ. T. Tisdale, T. Smith, J. R. Salasin, M. Ahmadi, N. Johnson, A. V. Ievlev, M. Koehler, C. J. Rawn, E. Lukosi, B. Hu, CrystEngComm 2018, 20, 7818–7825;
- 12eS. P. Harvey, F. Zhang, A. Palmstrom, J. M. Luther, K. Zhu, J. J. Berry, ACS Appl. Mater. Interfaces 2019, 11, 30911–30918;
- 12fK. Higgins, M. Lorenz, M. Ziatdinov, R. K. Vasudevan, A. V. Ievlev, E. D. Lukosi, O. S. Ovchinnikova, S. V. Kalinin, M. Ahmadi, Adv. Funct. Mater. 2020, 30, 2001995;
- 12gY. Liu, M. Lorenz, A. V. Ievlev, O. S. Ovchinnikova, Adv. Funct. Mater. 2020, 30, 2002201;
- 12hD. Kim, Y. Liu, A. V. Ievlev, K. Higgins, O. S. Ovchinnikova, J. S. Yun, J. Seidel, S. V. Kalinin, M. Ahmadi, Nano Energy 2021, 89, 106428;
- 12iY. Liu, N. Borodinov, L. Collins, M. Ahmadi, S. V. Kalinin, O. S. Ovchinnikova, A. V. Ievlev, ACS Nano 2021, 15, 9017–9026.
- 13
- 13aY. Zhang, M. Su, X. Yu, Y. Zhou, J. Wang, R. Cao, W. Xu, C. Wang, D. R. Baer, O. Borodin, K. Xu, Y. Wang, X.-L. Wang, Z. Xu, F. Wang, Z. Zhu, Anal. Chem. 2018, 90, 3341–3348;
- 13bY. Zhang, W. Zeng, L. Huang, W. Liu, E. Jia, Y. Zhao, F. Wang, Z. Zhu, Anal. Chem. 2019, 91, 7039–7046;
- 13cY. Wang, D. Song, Y. Zhou, C. Cheng, Y. Zhang, C. I. Pearce, Z. Wang, S. B. Clark, J. Zhu, K. M. Rosso, Z. Zhu, X. Zhang, Anal. Chem. 2021, 93, 1068–1075.
- 14
- 14aY. Zhang, J.-G. Wang, X. Yu, D. R. Baer, Y. Zhao, L. Mao, F. Wang, Z. Zhu, ACS Energy Lett. 2019, 4, 215–221;
- 14bY. Zhou, M. Su, X. Yu, Y. Zhang, J.-G. Wang, X. Ren, R. Cao, W. Xu, D. R. Baer, Y. Du, O. Borodin, Y. Wang, X.-L. Wang, K. Xu, Z. Xu, C. Wang, Z. Zhu, Nat. Nanotechnol. 2020, 15, 224–230;
- 14cY. Zhang, J. Tang, Z. Ni, Y. Zhao, F. Jia, Q. Luo, L. Mao, Z. Zhu, F. Wang, J. Phys. Chem. Lett. 2021, 12, 5279–5285.
- 15G. S. Shin, Y. Zhang, N.-G. Park, ACS Appl. Mater. Interfaces 2020, 12, 15167–15174.
- 16T. Lu, Q. Chen, Chemistry–Methods 2021, 1, 231–239.
- 17F. L. Hirshfeld, Theor. Chim. Acta 1977, 44, 129–138.
- 18Y. Hu, M. F. Aygüler, M. L. Petrus, T. Bein, P. Docampo, ACS Energy Lett. 2017, 2, 2212–2218.
- 19
- 19aP. Zhu, S. Gu, X. Luo, Y. Gao, S. Li, J. Zhu, H. Tan, Adv. Energy Mater. 2020, 10, 1903083;
- 19bP. Guo, Q. Ye, X. Yang, J. Zhang, F. Xu, D. Shchukin, B. Wei, H. Wang, J. Mater. Chem. A 2019, 7, 2497–2506.