Chiral-at-Cage Carboranes for Circularly Polarized Luminescence and Aggregation-Induced Electrochemiluminescence
Jingjing Tong
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorYue Cao
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorYi-Wen Zhang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorPeng Wang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorPenglong Wang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorXiang-Ji Liao
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorWeigang Zhang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yi Wang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
MaAnShan High-Tech Research Institute of Nanjing University, MaAnShan, 238200 P. R. China
Search for more papers by this authorCorresponding Author
Prof. You-Xuan Zheng
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
MaAnShan High-Tech Research Institute of Nanjing University, MaAnShan, 238200 P. R. China
Search for more papers by this authorProf. Jun-Jie Zhu
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorProf. Yi Pan
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
MaAnShan High-Tech Research Institute of Nanjing University, MaAnShan, 238200 P. R. China
Search for more papers by this authorJingjing Tong
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorYue Cao
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorYi-Wen Zhang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorPeng Wang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorPenglong Wang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorXiang-Ji Liao
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorWeigang Zhang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Yi Wang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
MaAnShan High-Tech Research Institute of Nanjing University, MaAnShan, 238200 P. R. China
Search for more papers by this authorCorresponding Author
Prof. You-Xuan Zheng
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
MaAnShan High-Tech Research Institute of Nanjing University, MaAnShan, 238200 P. R. China
Search for more papers by this authorProf. Jun-Jie Zhu
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorProf. Yi Pan
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
MaAnShan High-Tech Research Institute of Nanjing University, MaAnShan, 238200 P. R. China
Search for more papers by this authorGraphical Abstract
Two chiral-at-cage carbazole-modified carboranes emit circularly polarized luminescence (CPL) and aggregation-induced electrochemiluminescence (AIECL). The |gPL| factors of (R/S)-Cb1 and (R/S)-Cb2 enantiomers in films reached 7.38×10−3. Significant solvation effect was observed in the fluorescence and CPL of Cb1, while Cb2 showed remarkable AIECL effect with excellent ECL stability and dopamine detection ability.
Abstract
Herein, we report the structures of chiral-at-cage carborane derivatives bearing carbazole chromophores that emit circularly polarized luminescence (CPL) and aggregation-induced electrochemiluminescence (AIECL). By adjusting the substituent positions on the carborane derivatives, two chiral luminescent molecules, Cb1 and Cb2, with different properties were obtained. The photoluminescence dissymmetry factors |gPL| of both (R/S)-Cb1 and (R/S)-Cb2 enantiomers in neat films were as high as 6.24×10−3 and 7.38×10−3, respectively. Cb1 showed a deep blue emission peak at 434 nm in n-pentane. Interestingly, distinct fluorescence and CPL spectra were observed in solvents of different polarities due to the twisted intramolecular charge transfer effect, suggesting its potential use in solvent recognition. Meanwhile, Cb2 exhibited good AIECL property, excellent ECL stability and could be used for determining dopamine concentrations, suggesting its potential applications in biology and diagnosis.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202209438-sup-0001-(R)-Cb1.cif654.1 KB | Supporting Information |
anie202209438-sup-0001-(R)-Cb2.cif521.2 KB | Supporting Information |
anie202209438-sup-0001-(S)-Cb1.cif645.4 KB | Supporting Information |
anie202209438-sup-0001-(S)-Cb2.cif286.5 KB | Supporting Information |
anie202209438-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. Xie, Coord. Chem. Rev. 2002, 231, 23–46;
- 1bZ. Xie, Acc. Chem. Res. 2003, 36, 1–9;
- 1cL. Deng, Z. Xie, Coord. Chem. Rev. 2007, 251, 2452–2476;
- 1dZ.-J. Yao, G.-X. Jin, Coord. Chem. Rev. 2013, 257, 2522–2535.
- 2
- 2aF. Issa, M. Kassiou, L. M. Rendina, Chem. Rev. 2011, 111, 5701–5722;
- 2bA. F. Armstrong, J. F. Valliant, Dalton Trans. 2007, 4240–4251;
- 2cM. F. Hawthorne, Angew. Chem. Int. Ed. Engl. 1993, 32, 950–984; Angew. Chem. 1993, 105, 997–1033.
- 3
- 3aP. Bauduin, S. Prevost, P. Farràs, F. Teixidor, O. Diat, T. Zemb, Angew. Chem. Int. Ed. 2011, 50, 5298–5300; Angew. Chem. 2011, 123, 5410–5412;
- 3bR. N. Grimes, Dalton Trans. 2015, 44, 5939–5956;
- 3cH. Jude, H. Disteldorf, S. Fischer, T. Wedge, A. M. Hawkridge, A. M. Arif, M. F. Hawthorne, D. C. Muddiman, P. J. Stang, J. Am. Chem. Soc. 2005, 127, 12131–12139;
- 3dM. Koshino, T. Tanaka, N. Solin, K. Suenaga, H. Isobe, E. Nakamura, Science 2007, 316, 853–853;
- 3eD. Brusselle, P. Bauduin, L. Girard, A. Zaulet, C. Viñas, F. Teixidor, I. Ly, O. Diat, Angew. Chem. Int. Ed. 2013, 52, 12114–12118; Angew. Chem. 2013, 125, 12336–12340;
- 3fA. M. Cioran, A. D. Musteti, F. Teixidor, Ž. Krpetić, I. A. Prior, Q. He, C. J. Kiely, M. Brust, C. Viñas, J. Am. Chem. Soc. 2012, 134, 212–221;
- 3gJ. Guo, D. Liu, J. Zhang, J. Zhang, Q. Miao, Z. Xie, Chem. Commun. 2015, 51, 12004–12007;
- 3hX. Yang, W. Jiang, C. B. Knobler, M. F. Hawthorne, J. Am. Chem. Soc. 1992, 114, 9719–9721;
- 3iB. P. Dash, R. Satapathy, E. R. Gaillard, J. A. Maguire, N. S. Hosmane, J. Am. Chem. Soc. 2010, 132, 6578–6587.
- 4
- 4aC. Shi, H. Sun, Q. Jiang, Q. Zhao, J. Wang, W. Huang, H. Yan, Chem. Commun. 2013, 49, 4746–4748;
- 4bK.-R. Wee, Y.-J. Cho, S. Jeong, S. Kwon, J.-D. Lee, I.-H. Suh, S. O. Kang, J. Am. Chem. Soc. 2012, 134, 17982–17990;
- 4cH. J. Bae, J. Chung, H. Kim, J. Park, K. M. Lee, T.-W. Koh, Y. S. Lee, S. Yoo, Y. Do, M. H. Lee, Inorg. Chem. 2014, 53, 128–138;
- 4dK.-R. Wee, Y.-J. Cho, J. K. Song, S. O. Kang, Angew. Chem. Int. Ed. 2013, 52, 9682–9685; Angew. Chem. 2013, 125, 9864–9867;
- 4eH. Naito, Y. Morisaki, Y. Chujo, Angew. Chem. Int. Ed. 2015, 54, 5084–5087; Angew. Chem. 2015, 127, 5173–5176;
- 4fA. Ferrer-Ugalde, E. J. Juárez-Pérez, F. Teixidor, C. Viñas, R. Sillanpää, E. Pérez-Inestrosa, R. Núñez, Chem. Eur. J. 2012, 18, 544–553;
- 4gC. Shi, H. Sun, X. Tang, W. Lv, H. Yan, Q. Zhao, J. Wang, W. Huang, Angew. Chem. Int. Ed. 2013, 52, 13434–13438; Angew. Chem. 2013, 125, 13676–13680.
- 5
- 5aR. Furue, T. Nishimoto, I. S. Park, J. Lee, T. Yasuda, Angew. Chem. Int. Ed. 2016, 55, 7171–7175; Angew. Chem. 2016, 128, 7287–7291;
- 5bK.-R. Wee, W.-S. Han, D. W. Cho, S. Kwon, C. Pac, S. O. Kang, Angew. Chem. Int. Ed. 2012, 51, 2677–2680; Angew. Chem. 2012, 124, 2731–2734;
- 5cB. P. Dash, R. Satapathy, E. R. Gaillard, K. M. Norton, J. A. Maguire, N. Chug, N. S. Hosmane, Inorg. Chem. 2011, 50, 5485–5493;
- 5dN. V. Nghia, S. Jana, S. Sujith, J. Y. Ryu, J. Lee, S. U. Lee, M. H. Lee, Angew. Chem. Int. Ed. 2018, 57, 12483–12488; Angew. Chem. 2018, 130, 12663–12668.
- 6
- 6aX. Wei, M. Zhu, Z. Cheng, M. Lee, H. Yan, C. Lu, J. Xu, Angew. Chem. Int. Ed. 2019, 58, 3162–3166; Angew. Chem. 2019, 131, 3194–3198;
- 6bD. Tu, S. Cai, C. Fernandez, H. Ma, X. Wang, H. Wang, C. Ma, H. Yan, C. Lu, Z. An, Angew. Chem. Int. Ed. 2019, 58, 9129–9133; Angew. Chem. 2019, 131, 9227–9231;
- 6cD. Tu, P. Leong, S. Guo, H. Yan, C. Lu, Q. Zhao, Angew. Chem. Int. Ed. 2017, 56, 11370–11374; Angew. Chem. 2017, 129, 11528–11532;
- 6dX. Li, X. Tong, Y. Yin, H. Yan, C. Lu, W. Huang, Q. Zhao, Chem. Sci. 2017, 8, 5930–5940;
- 6eR. Cheng, B. Li, J. Wu, J. Zhang, Z. Qiu, W. Tang, S.-L. You, Y. Tang, Z. Xie, J. Am. Chem. Soc. 2018, 140, 4508–4511;
- 6fR. Cheng, J. Zhang, H. Zhang, Z. Qiu, Z. Xie, Nat. Commun. 2021, 12, 7146;
- 6gR. Cheng, Z. Qiu, Z. Xie, Nat. Commun. 2017, 8, 14827.
- 7
- 7aF. Zinna, U. Giovanella, L. D. Bari, Adv. Mater. 2015, 27, 1791–1795;
- 7bX. Zhan, F.-F. Xu, Z. Zhou, Y. Yan, J. Yao, Y. S. Zhao, Adv. Mater. 2021, 33, 2104418.
- 8C. Wang, H. Fei, Y. Qiu, Y. Yang, Z. Wei, Y. Tian, Y. Chen, Y. Zhao, Appl. Phys. Lett. 1999, 74, 19–21.
- 9
- 9aC. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, J.-W. Pan, Nat. Photonics 2010, 4, 549–552;
- 9bJ. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, Science 2006, 314, 1916–1920;
- 9cR. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, H. T. Grahn, Appl. Phys. Lett. 2011, 98, 162508.
- 10J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, E. S. Polzik, Nature 2006, 443, 557–560.
- 11M. C. Heffern, L. M. Matosziuk, T. J. Meade, Chem. Rev. 2014, 114, 4496–4539.
- 12
- 12aY. Yang, R. C. da Costa, M. J. Fuchter, A. J. Campbell, Nat. Photonics 2013, 7, 634–638;
- 12bY. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, Y. Iwasa, Science 2014, 344, 725–728.
- 13
- 13aY. Imai, Y. Nakano, T. Kawai, J. Yuasa, Angew. Chem. Int. Ed. 2018, 57, 8973–8978; Angew. Chem. 2018, 130, 9111–9116;
- 13bF. Song, G. Wei, X. Jiang, F. Li, C. Zhu, Y. Cheng, Chem. Commun. 2013, 49, 5772–5774;
- 13cS. Shuvaev, M. A. Fox, D. Parker, Angew. Chem. Int. Ed. 2018, 57, 7488–7492; Angew. Chem. 2018, 130, 7610–7614.
- 14
- 14aJ. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, N. A. Kotov, Nat. Mater. 2015, 14, 66–72;
- 14bR. D. Richardson, M. G. J. Baud, C. E. Weston, H. S. Rzepa, M. K. Kuimova, M. J. Fuchter, Chem. Sci. 2015, 6, 3853–3862;
- 14cT. Kawasaki, M. Sato, S. Ishiguro, T. Saito, Y. Morishita, I. Sato, H. Nishino, Y. Inoue, K. Soai, J. Am. Chem. Soc. 2005, 127, 3274–3275.
- 15
- 15aN. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso, Nano Lett. 2012, 12, 6328–6333;
- 15bS. M. Jeong, Y. Ohtsuka, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, G. Suzaki, Appl. Phys. Lett. 2007, 90, 211106;
- 15cH. Shao, Y. He, W. Li, H. Ma, Appl. Opt. 2006, 45, 4491–4496.
- 16Y. Wang, Y. Zhang, W. Hu, Y. Quan, Y. Li, Y. Cheng, ACS Appl. Mater. Interfaces 2019, 11, 26165–26173.
- 17
- 17aS. Feuillastre, M. Pauton, L. Gao, A. Desmarchelier, A. J. Riives, D. Prim, D. Tondelier, B. Geffroy, G. Muller, G. Clavier, G. Pieters, J. Am. Chem. Soc. 2016, 138, 3990–3993;
- 17bF. Song, Z. Xu, Q. Zhang, Z. Zhao, H. Zhang, W. Zhao, Z. Qiu, C. Qi, H. Zhang, H. H. Y. Sung, I. D. Williams, J. W. Y. Lam, Z. Zhao, A. Qin, D. Ma, B. Z. Tang, Adv. Funct. Mater. 2018, 28, 1800051.
- 18Z.-G. Wu, H.-B. Han, Z.-P. Yan, X.-F. Luo, Y. Wang, Y.-X. Zheng, J.-L. Zuo, Y. Pan, Adv. Mater. 2019, 31, 1900524.
- 19M. Li, S.-H. Li, D. Zhang, M. Cai, L. Duan, M.-K. Fung, C.-F. Chen, Angew. Chem. Int. Ed. 2018, 57, 2889–2893; Angew. Chem. 2018, 130, 2939–2943.
- 20
- 20aZ.-L. Tu, Z.-P. Yan, X. Liang, L. Chen, Z.-G. Wu, Y. Wang, Y.-X. Zheng, J.-L. Zuo, Y. Pan, Adv. Sci. 2020, 7, 2000804;
- 20bM. Li, Y. Wang, D. Zhang, L. Duan, C. Chen, Angew. Chem. Int. Ed. 2020, 59, 3500–3504; Angew. Chem. 2020, 132, 3528–3532;
- 20cZ.-P. Yan, T.-T. Liu, R. Wu, X. Liang, Z.-Q. Li, L. Zhou, Y.-X. Zheng, J.-L. Zuo, Adv. Funct. Mater. 2021, 31, 2103875;
- 20dY.-P. Zhang, X. Liang, X.-F. Luo, S.-Q. Song, S. Li, Y. Wang, Z.-P. Mao, W.-Y. Xu, Y.-X. Zheng, J.-L. Zuo, Y. Pan, Angew. Chem. Int. Ed. 2021, 60, 8435–8440; Angew. Chem. 2021, 133, 8516–8521;
- 20eX. Wu, J.-W. Huang, B.-K. Su, S. Wang, L. Yuan, W.-Q. Zheng, H. Zhang, Y.-X. Zheng, W. Zhu, P.-T. Chou, Adv. Mater. 2022, 34, 2105080;
- 20fZ.-L. Gong, X. Zhu, Z. Zhou, S.-W. Zhang, D. Yang, B. Zhao, Y.-P. Zhang, J. Deng, Y. Cheng, Y.-X. Zheng, S.-Q. Zang, H. Kuang, P. Duan, M. Yuan, C.-F. Chen, Y. S. Zhao, Y.-W. Zhong, B. Z. Tang, M. Liu, Sci. China Chem. 2021, 64, 2060–2104;
- 20gY.-P. Zhang, S.-Q. Song, M.-X. Mao, C.-H. Li, Y.-X. Zheng, J.-L. Zuo, Sci. China Chem. 2022, https://doi.org/10.1007/s11426-022-1249-7;
- 20hY.-P. Zhang, M.-X. Mao, S.-Q. Song, Y. Wang, Y.-X. Zheng, J.-L. Zuo, Y. Pan, Angew. Chem. Int. Ed. 2022, 61, e202200290; Angew. Chem. 2022, 134, e202200290.
- 21
- 21aZ.-Y. Wang, M.-Q. Wang, Y.-L. Li, P. Luo, T.-T. Jia, R.-W. Huang, S.-Q. Zang, T. C. W. Mak, J. Am. Chem. Soc. 2018, 140, 1069–1076;
- 21bJ. C. Axtell, K. O. Kirlikovali, P. I. Djurovich, D. Jung, V. T. Nguyen, B. Munekiyo, A. T. Royappa, A. L. Rheingold, A. M. Spokoyny, J. Am. Chem. Soc. 2016, 138, 15758–15765;
- 21cE. Hong, H. Jang, Y. Kim, S. C. Jeoung, Y. Do, Adv. Mater. 2001, 13, 1094–1096;
- 21dH. Yang, H. Liu, Y. Shen, S. Zhang, Q. Zhang, Q. Song, C. Lv, C. Zhang, B. Yang, Y. Ma, Y. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202115551; Angew. Chem. 2022, 134, e202115551;
- 21eJ. Ochi, K. Tanaka, Y. Chujo, Angew. Chem. Int. Ed. 2020, 59, 9841–9855; Angew. Chem. 2020, 132, 9925–9939;
- 21fH. Naito, K. Nishino, Y. Morisaki, K. Tanaka, Y. Chujo, Angew. Chem. Int. Ed. 2017, 56, 254–259; Angew. Chem. 2017, 129, 260–265.
- 22
- 22aK. B. Gona, V. Gómez-Vallejo, D. Padro, J. Llop, Chem. Commun. 2013, 49, 11491–11493;
- 22bR. M. Dziedzic, J. L. Martin, J. C. Axtell, L. M. A. Saleh, T.-C. Ong, Y.-F. Yang, M. S. Messina, A. L. Rheingold, K. N. Houk, A. M. Spokoyny, J. Am. Chem. Soc. 2017, 139, 7729–7732;
- 22cR. B. King, J. Math. Chem. 1987, 1, 45–59;
- 22dA. V. Usatov, E. V. Martynova, F. M. Dolgushin, A. S. Peregudov, M. Yu Antipin, Y. N. Novikov, Eur. J. Inorg. Chem. 2002, 2565–2567.
- 23
- 23aY. Quan, Z. Xie, J. Am. Chem. Soc. 2014, 136, 15513–15516;
- 23bY. Quan, Z. Xie, Angew. Chem. Int. Ed. 2016, 55, 1295–1298; Angew. Chem. 2016, 128, 1317–1320;
- 23cY. Quan, Z. Xie, J. Am. Chem. Soc. 2015, 137, 3502–3505;
- 23dX. Zhang, H. Zheng, J. Li, F. Xu, J. Zhao, H. Yan, J. Am. Chem. Soc. 2017, 139, 14511–14517;
- 23eH. Lyu, Y. Quan, Z. Xie, J. Am. Chem. Soc. 2016, 138, 12727–12730;
- 23fY. Quan, Z. Qiu, Z. Xie, Chem. Eur. J. 2018, 24, 2795–2805.
- 24Deposition numbers 2175245 ((R)-Cb1), 2175107 ((S)-Cb1), 2175246 ((R)-Cb2) and 2175254 ((S)-Cb2) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 25
- 25aZ. R. Grabowski, K. Rotkiewicz, Chem. Rev. 2003, 103, 3899–4031;
- 25bT. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51–57;
- 25cP. Stachelek, A. Harriman, J. Phys. Chem. A 2016, 120, 8104–8113;
- 25dT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592;
- 25eF. Wu, L. Chen, H. Wang, Y. Chen, J. Phys. Chem. C 2013, 117, 9581–9589.
- 26F. S. Richardson, J. P. Riehl, Chem. Rev. 1977, 77, 773–792.
- 27F. Zinna, M. Pasini, F. Galeotti, C. Botta, L. Di Bari, U. Giovanella, Adv. Funct. Mater. 2017, 27, 1603719.
- 28
- 28aY. Yang, R. C. da Costa, D. M. Smilgies, A. J. Campbell, M. J. Fuchter, Adv. Mater. 2013, 25, 2624–2628;
- 28bL. Wan, J. Wade, F. Salerno, O. Arteaga, B. Laidlaw, X. Wang, T. Penfold, M. J. Fuchter, A. J. Campbell, ACS Nano 2019, 13, 8099–8105;
- 28cD. M. Lee, J. W. Song, Y. J. Lee, C. J. Yu, J. H. Kim, Adv. Mater. 2017, 29, 1700907;
- 28dC. Zhang, Z.-P. Yan, X.-Y. Dong, Z. Han, S. Li, T. Fu, Y.-Y. Zhu, Y.-X. Zheng, Y.-Y. Niu, S.-Q. Zang, Adv. Mater. 2020, 32, 2002914.
- 29M. Caiazzo, M. T. Dell'Anno, E. Dvoretskova, D. Lazarevic, S. Taverna, D. Leo, T. D. Sotnikova, A. Menegon, P. Roncaglia, G. Colciago, G. Russo, P. Carninci, G. Pezzoli, R. R. Gainetdinov, S. Gustincich, A. Dityatev, V. Broccoli, Nature 2011, 476, 224–227.
- 30Y. Lan, F. Yuan, T. H. Fereja, C. Wang, B. Lou, J. Li, G. Xu, Anal. Chem. 2019, 91, 2135–2139.