The Atypical Hysteresis of [Fe(C6F5Tp)2]: Overlay of Spin-Crossovers and Symmetry-Breaking Phase Transition
Amina Benchohra
Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 5, France
Search for more papers by this authorYanling Li
Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 5, France
Search for more papers by this authorLise-Marie Chamoreau
Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 5, France
Search for more papers by this authorBenoit Baptiste
Institut de Mineralogie, de Physique des Materiaux et de Cosmochimie (IMPMC), Sorbonne Universite, UMR 7590 CNRS, UMR 206 IRD, Museum National d'Histoire Naturelle MNHN, 4 place Jussieu, 75252 Paris cedex 5, France
Search for more papers by this authorErik Elkaïm
Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin—BP 48, 91192 Gif-sur-Yvette cedex, France
Search for more papers by this authorCorresponding Author
Nathalie Guillou
Université Paris-Saclay, UVSQ, Institut Lavoisier de Versailles, CNRS UMR 8180, 45 Avenue des Etats-Unis, 78035 Versailles, France
Search for more papers by this authorCorresponding Author
David Kreher
Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 5, France
Search for more papers by this authorCorresponding Author
Rodrigue Lescouëzec
Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 5, France
Search for more papers by this authorAmina Benchohra
Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 5, France
Search for more papers by this authorYanling Li
Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 5, France
Search for more papers by this authorLise-Marie Chamoreau
Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 5, France
Search for more papers by this authorBenoit Baptiste
Institut de Mineralogie, de Physique des Materiaux et de Cosmochimie (IMPMC), Sorbonne Universite, UMR 7590 CNRS, UMR 206 IRD, Museum National d'Histoire Naturelle MNHN, 4 place Jussieu, 75252 Paris cedex 5, France
Search for more papers by this authorErik Elkaïm
Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin—BP 48, 91192 Gif-sur-Yvette cedex, France
Search for more papers by this authorCorresponding Author
Nathalie Guillou
Université Paris-Saclay, UVSQ, Institut Lavoisier de Versailles, CNRS UMR 8180, 45 Avenue des Etats-Unis, 78035 Versailles, France
Search for more papers by this authorCorresponding Author
David Kreher
Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 5, France
Search for more papers by this authorCorresponding Author
Rodrigue Lescouëzec
Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 place Jussieu, 75252 Paris cedex 5, France
Search for more papers by this authorGraphical Abstract
The [FeII(C6F5Tp)2] complex is converted through melting from a crystal phase showing a very gradual spin-crossover to another one showing a broad hysteretic spin-transition. The uncommon “rounded” hysteresis occurs in a non-cooperative SCO system. It is due to a symmetry-breaking phase transition that is triggered when roughly ca. 50 % of the SCO complexes are switched.
Abstract
The [FeII(C6F5Tp)2] spin-crossover complex is an atypical molecular switch, which can be converted upon annealing between two archetypal spin-crossover behaviours: from an extremely gradual spin-crossover to a broad hysteretic spin-transition (of ca. 65 K). The hysteresis shows an uncommon “rounded shape” that is reproducible upon cycling temperature. In depth structural studies reveal a first crystal phase transition, which occurs upon melting and recrystallizing at high temperature. This first irreversible transition is associated with a radical change in the crystal packing. More importantly, the “rounded and broad” hysteretic transition is shown to occur in a non-cooperative SCO system and is associated with the occurrence of a symmetry-breaking phase transition that appears when roughly ca. 50 % of the SCO complexes are switched.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202015994-sup-0001-misc_information.pdf5.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Molecular Switches (Ed.: B. L. Feringa), Wiley-VCH, Weinheim, 2011.
- 2 Spin-Crossover Materials: Properties and Applications (Ed.: M. A. Halcrow), Wiley, Chichester, 2013.
10.1002/9781118519301 Google Scholar
- 3Y.-S. Koo, J. R. Galán-Mascarós, Adv. Mater. 2014, 26, 6785–6789.
- 4G. Molnár, S. Rat, L. Salmon, W. Nicolazzi, A. Bousseksou, Adv. Mater. 2018, 30, 1703862.
- 5F. Valverde-Muñoz, M. Seredyuk, M. C. Muñoz, G. Molnár, Y. S. Bibik, J. A. Real, Angew. Chem. 2020, 132, 18791–18797.
10.1002/ange.202006453 Google Scholar
- 6K. Senthil Kumar, M. Ruben, Coord. Chem. Rev. 2017, 346, 176–205.
- 7J. Dugay, M. Aarts, M. Giménez-Marqués, T. Kozlova, H. W. Zandbergen, E. Coronado, H. S. J. van der Zant, Nano Lett. 2017, 17, 186–193.
- 8A. C. Aragonès, D. Aravena, J. I. Cerdá, Z. Acís-Castillo, H. Li, J. A. Real, F. Sanz, J. Hihath, E. Ruiz, I. Díez-Pérez, Nano Lett. 2016, 16, 218–226.
- 9T. Miyamachi, M. Gruber, V. Davesne, M. Bowen, S. Boukari, L. Joly, F. Scheurer, G. Rogez, T. K. Yamada, P. Ohresser, E. Beaurepaire, W. Wulfhekel, Nat. Commun. 2012, 3, 938.
- 10F. Prins, M. Monrabal-Capilla, E. A. Osorio, E. Coronado, H. S. J. van der Zant, Adv. Mater. 2011, 23, 1545–1549.
- 11X. Zhang, P. S. Costa, J. Hooper, D. P. Miller, A. T. N'Diaye, S. Beniwal, X. Jiang, Y. Yin, P. Rosa, L. Routaboul, M. Gonidec, L. Poggini, P. Braunstein, B. Doudin, X. Xu, A. Enders, E. Zurek, P. A. Dowben, Adv. Mater. 2017, 29, 1702257.
- 12M. Gruber, T. Miyamachi, V. Davesne, M. Bowen, S. Boukari, W. Wulfhekel, M. Alouani, E. Beaurepaire, J. Chem. Phys. 2017, 146, 092312.
- 13C. Lefter, S. Rat, J. S. Costa, M. D. Manrique-Juárez, C. M. Quintero, L. Salmon, I. Séguy, T. Leichle, L. Nicu, P. Demont, A. Rotaru, G. Molnár, A. Bousseksou, Adv. Mater. 2016, 28, 7508–7514.
- 14K. Boukheddaden, S. Miyashita, M. Nishino, Phys. Rev. B 2007, 75, 094112.
- 15O. Kahn, Science 1998, 279, 44–48.
- 16M. Ohba, K. Yoneda, G. Agustí, M. C. Muñoz, A. B. Gaspar, J. A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sakaki, S. Kitagawa, Angew. Chem. Int. Ed. 2009, 48, 4767–4771; Angew. Chem. 2009, 121, 4861–4865.
- 17J. A. Real, A. B. Gaspar, V. Niel, M. C. Muñoz, Coord. Chem. Rev. 2003, 236, 121–141.
- 18J.-F. Létard, P. Guionneau, E. Codjovi, O. Lavastre, G. Bravic, D. Chasseau, O. Kahn, J. Am. Chem. Soc. 1997, 119, 10861–10862.
- 19B. Weber, W. Bauer, J. Obel, Angew. Chem. Int. Ed. 2008, 47, 10098–10101; Angew. Chem. 2008, 120, 10252–10255.
- 20M. Kepenekian, B. Le Guennic, V. Robert, J. Am. Chem. Soc. 2009, 131, 11498–11502.
- 21M. Shatruk, H. Phan, B. A. Chrisostomo, A. Suleimenova, Coord. Chem. Rev. 2015, 289–290, 62–73.
- 22D. L. Reger, J. R. Gardinier, M. D. Smith, A. M. Shahin, G. J. Long, L. Rebbouh, F. Grandjean, Inorg. Chem. 2005, 44, 1852–1866.
- 23S. Vela, H. Paulsen, Inorg. Chem. 2018, 57, 9478–9488.
- 24J. Tao, R.-J. Wei, R.-B. Huang, L.-S. Zheng, Chem. Soc. Rev. 2012, 41, 703–737.
- 25L. Salmon, G. Molnár, S. Cobo, P. Oulié, M. Etienne, T. Mahfoud, P. Demont, A. Eguchi, H. Watanabe, K. Tanaka, A. Bousseksou, New J. Chem. 2009, 33, 1283.
- 26O. Iasco, M.-L. Boillot, A. Bellec, R. Guillot, E. Rivière, S. Mazerat, S. Nowak, D. Morineau, A. Brosseau, F. Miserque, V. Repain, T. Mallah, J. Mater. Chem. C 2017, 5, 11067–11075.
- 27H. Vitze, M. Bolte, H.-W. Lerner, M. Wagner, Eur. J. Inorg. Chem. 2016, 2443–2454.
- 28D. L. Reger, J. R. Gardinier, W. R. Gemmill, M. D. Smith, A. M. Shahin, G. J. Long, L. Rebbouh, F. Grandjean, J. Am. Chem. Soc. 2005, 127, 2303–2316.
- 29K. Reichenbächer, H. I. Süss, J. Hulliger, Chem. Soc. Rev. 2005, 34, 22–30.
- 30A. Lennartson, A. D. Bond, S. Piligkos, C. J. McKenzie, Angew. Chem. Int. Ed. 2012, 51, 11049–11052; Angew. Chem. 2012, 124, 11211–11214.
- 31Deposition Number(s) 1943447, 1943448 and 1943449 (for phase 1 at 300, 430, 490 K, respectively), 1943450 (for phase 2-LT at 100 K) and 2046498 (for phase 2-HT at 503 K) contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.