1,3,4-Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level
Dr. Jinchao Ma
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210000 China
Department of Chemistry, University of Idaho, Moscow, ID, 83844-2343 USA
Biomaterials Center, Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai, 519003 China
Search for more papers by this authorDr. Ajay Kumar Chinnam
Department of Chemistry, University of Idaho, Moscow, ID, 83844-2343 USA
Search for more papers by this authorCorresponding Author
Prof. Guangbin Cheng
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210000 China
Search for more papers by this authorProf. Hongwei Yang
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210000 China
Search for more papers by this authorCorresponding Author
Prof. Jiaheng Zhang
Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Jean'ne M. Shreeve
Department of Chemistry, University of Idaho, Moscow, ID, 83844-2343 USA
Search for more papers by this authorDr. Jinchao Ma
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210000 China
Department of Chemistry, University of Idaho, Moscow, ID, 83844-2343 USA
Biomaterials Center, Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai, 519003 China
Search for more papers by this authorDr. Ajay Kumar Chinnam
Department of Chemistry, University of Idaho, Moscow, ID, 83844-2343 USA
Search for more papers by this authorCorresponding Author
Prof. Guangbin Cheng
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210000 China
Search for more papers by this authorProf. Hongwei Yang
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210000 China
Search for more papers by this authorCorresponding Author
Prof. Jiaheng Zhang
Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Jean'ne M. Shreeve
Department of Chemistry, University of Idaho, Moscow, ID, 83844-2343 USA
Search for more papers by this authorGraphical Abstract
A series of 1,3,4-oxadiazole-bridged furazans was prepared. The thermal stability, friction sensitivity, impact sensitivity, detonation velocity, and detonation pressure were evaluated. The hydroxylammonium salt 8 shows great potential as a high-performance insensitive explosive. The synthetic method for introducing 1,3,4-oxadiazole and the systematic study of 1,3,4-oxadiazole-bridged compounds provide a theoretical basis for future energetics design.
Abstract
Many energetic materials synthesized to date have limited applications because of low thermal and/or mechanical stability. This limitation can be overcome by introducing structural modifications such as a bridging group. In this study, a series of 1,3,4-oxadiazole-bridged furazans was prepared. Their structures were confirmed by 1H and 13C NMR, infrared, elemental, and X-ray crystallographic analyses. The thermal stability, friction sensitivity, impact sensitivity, detonation velocity, and detonation pressure were evaluated. The hydroxylammonium salt 8 has an excellent detonation performance (D=9101 m s−1, P=37.9 GPa) and insensitive properties (IS=17.4 J, FS=330 N), which show its great potential as a high-performance insensitive explosive. Using quantum computation and crystal structure analysis, the effect of the introduction of the 1,3,4-oxadiazole moiety on molecular reactivity and the difference between the sensitivities and thermal stabilities of mono- and bis-1,3,4-oxadiazole bridges are considered. The synthetic method for introducing 1,3,4-oxadiazole and the systematic study of 1,3,4-oxadiazole-bridged compounds provide a theoretical basis for future energetics design.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202014207-sup-0001-misc_information.pdf4.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. E. Bachmann, W. J. Horton, E. L. Jenner, N. W. MacNaughton, L. B. Scott, J. Am. Chem. Soc. 1951, 73, 2769–2773.
- 2H. Feuer, J. W. Shepherd, C. Savides, J. Am. Chem. Soc. 1956, 78, 4364–4367.
- 3A. T. Nielsen, R. A. Nissan, D. J. Vanderah, C. L. Coon, R. D. Gilardi, C. F. George, J. Flippen-Anderson, J. Org. Chem. 1990, 55, 1459–1466.
- 4T. N. Arnold, B. C. Santa, United States Patent US005693794A, 1997.
- 5Y. Wang, X. Song, D. Song, L. Liang, C. An, J. Wang, J. Hazard. Mater. 2016, 312, 73–83.
- 6Y. Liu, C. An, J. Luo, J. Wang, J. Nanosci. Nanotechnol. 2019, 19, 5783–5789.
- 7O. Bolton, A. J. Matzger, Angew. Chem. Int. Ed. 2011, 50, 8960–8963; Angew. Chem. 2011, 123, 9122–9125.
- 8T. Fei, P. Lv, Y. Liu, C. He, C. Sun, S. Pang, Cryst. Growth Des. 2019, 19, 2779–2784.
- 9J. Zhang, J. M. Shreeve, CrystEngComm 2016, 18, 6124–6133.
- 10H. Gao, J. M. Shreeve, Chem. Rev. 2011, 111, 7377–7436.
- 11H. Wei, C. He, J. Zhang, J. M. Shreeve, Angew. Chem. Int. Ed. 2015, 54, 9367–9371; Angew. Chem. 2015, 127, 9499–9503.
- 12A. A. Dippold, T. M. Klapötke, J. Am. Chem. Soc. 2013, 135, 9931–9938.
- 13T. M. Klapötke, J. Stierstorfer, J. Am. Chem. Soc. 2009, 131, 1122–1134.
- 14P. Yin, Q. Zhang, J. M. Shreeve, Acc. Chem. Res. 2016, 49, 4–16.
- 15D. E. Chavez, D. A. Parrish, L. Mitchell, Angew. Chem. Int. Ed. 2016, 55, 8666–8669; Angew. Chem. 2016, 128, 8808–8811.
- 16J. Stierstorfer, K. R. Tarantik, T. M. Klapötke, Chem. Eur. J. 2009, 15, 5775–5792.
- 17T. M. Klapötke, B. Krumm, T. Reith, Eur. J. Org. Chem. 2017, 3666–3673.
- 18Q. Yu, G. H. Imler, D. A. Parrish, J. M. Shreeve, Chem. Eur. J. 2017, 23, 17682–17686.
- 19G. Zhao, P. Yin, D. Kumar, G. H. Imler, D. A. Parrish, J. M. Shreeve, J. Am. Chem. Soc. 2019, 141, 19581–19584.
- 20Y. H. Joo, J. M. Shreeve, Angew. Chem. Int. Ed. 2009, 48, 564–567; Angew. Chem. 2009, 121, 572–575.
- 21P. Yin, D. A. Parrish, J. M. Shreeve, Angew. Chem. Int. Ed. 2014, 53, 12889–12892; Angew. Chem. 2014, 126, 13103–13106.
- 22D. Fischer, T. M. Klapötke, M. Reymann, J. Stierstorfer, Chem. Eur. J. 2014, 20, 6401–6411.
- 23J. Zhang, J. M. Shreeve, J. Am. Chem. Soc. 2014, 136, 4437–4445.
- 24J. C. Dacons, M. E. Sitzmann, J. Heterocycl. Chem. 1977, 14, 1151–1155.
- 25T. M. Klapötke, T. G. Witkowski, ChemPlusChem 2016, 81, 357–360.
- 26J. Tian, H. Xiong, Q. Lin, G. Cheng, H. Yang, New J. Chem. 2017, 41, 1918–1924.
- 27W. Zhang, J. Zhang, M. Deng, X. Qi, F. Nie, Q. Zhang, Nat. Commun. 2017, 8, 181.
- 28Y. Tang, C. He, L. A. Mitchell, D. A. Parrish, J. M. Shreeve, J. Mater. Chem. A 2015, 3, 23143–23148.
- 29T. Ichikawa, T. Kato, T. Takenishi, J. Heterocycl. Chem. 1965, 2, 253–255.
- 30A. I. Stepanov, V. S. Sannikov, D. V. Dashko, A. G. Roslyakov, A. A. Astrat'ev, E. V. Stepanova, Chem. Heterocycl. Compd. 2015, 51, 350–360.
- 31A. B. Sheremetev, N. S. Aleksandrova, D. E. Dmitriev, B. B. Averkiev, M. Y. Antipin, J. Heterocycl. Chem. 2005, 42, 519–525.
- 32J. Ma, J. Tang, H. Yang, Z. Yi, G. Wu, S. Zhu, W. Zhang, Y. Li, G. Cheng, ACS Appl. Mater. Interfaces 2019, 11, 26053–26059.
- 33F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2 1987, 12, S1–S19.
- 34D. R. Miller, D. C. Swenson, E. G. Gillan, J. Am. Chem. Soc. 2004, 126, 5372–5373.
- 35T. M. Klapötke, B. Krumm, F. A. Martin, J. Stierstorfer, Chem. Asian J. 2012, 7, 214–224.
- 36N. V. Latypov, J. Bergman, A. Langlet, U. Wellmar, U. Bemm, Tetrahedron 1998, 54, 11525–11536.
- 37J. Evers, T. M. Klapötke, P. Mayer, G. Oehlinger, J. Welch, Inorg. Chem. 2006, 45, 4996–5007.
- 38C. Astorga, F. Rebolledo, V. Gotor, Synthesis 1991, 350–352.
- 39T. Fang, Q. Tan, Z. Ding, B. Liu, B. Xu, Org. Lett. 2014, 16, 2342–2345.
- 40M. D. Coburn, J. Labelled Compd. Radiopharm. 1985, 22, 183–187.
- 41Gaussian 09 Rev. C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT, 2010.
- 42A. J. Bellamy in High Energy Density Materials, (Ed.: T. M. Klapötke), Springer Berlin Heidelberg, Berlin, 2007, pp. 1–33.
10.1007/430_2006_054 Google Scholar
- 43R. Meyer, J. Köhler, A. Homburg, Explosives, 6th ed., Wiley-VCH, Weinheim, 2007.
10.1002/9783527617043 Google Scholar
- 44T. Yan, G. Cheng, H. Yang, New J. Chem. 2020, 44, 6643–6651.
- 45J. Shao, X. Cheng, X. Yang, J. Mol. Struct. 2005, 755, 127–130.
- 46M. D. Morse, Acc. Chem. Res. 2019, 52, 119–126.
- 47X. Yao, X. Hou, G. Wu, Y. Xu, H. Xiang, H. Jiao, Y. Li, J. Phys. Chem. A 2002, 106, 7184–7189.
- 48M. Suceska, EXPLO5 6.01, Brodarski Institute: Zagreb, Croatia, 2013.
- 49“Recommendations on the Transport of Dangerous Goods”: Manual of Tests and Criteria, 5th rev. ed. (Ed.: United Nations), United Nations Publication, New York, 2009.
- 50M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17, University of Western Australia, 2017.
- 51Deposition Numbers 1938328 (2⋅H2O), 1938331 (6⋅H2O), 1938329 (12) and 1938330 (14⋅2H2O) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.