Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties
Corresponding Author
Dr. Simon Krause
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Search for more papers by this authorDr. Nobuhiko Hosono
Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561 Japan
Search for more papers by this authorCorresponding Author
Prof. Susumu Kitagawa
Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Ushinomiya, Yoshida, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorCorresponding Author
Dr. Simon Krause
Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Search for more papers by this authorDr. Nobuhiko Hosono
Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561 Japan
Search for more papers by this authorCorresponding Author
Prof. Susumu Kitagawa
Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Ushinomiya, Yoshida, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorGraphical Abstract
Soft porous crystals (SPCs) can undergo cooperative stimuli-responsive structural transitions that strongly impact the physical properties and pore structure of the crystal. Hysteretic behavior and counterintuitive adsorption phenomena are a consequence of the complex energy landscapes and cooperativity of SPCs with regard to adsorption/desorption-induced deformation.
Abstract
In this Minireview, we discuss the fundamental chemistry of soft porous crystals (SPCs) by characterizing their common structural features and the resulting structural softness and transitions. In particular, we focus on the recently emerging properties based on metastable transitions and those arising from local dynamics. By comparing the resulting adsorption properties to those of commonly applied rigid adsorbents, we highlight the potential of SPCs to revolutionize adsorption-based technologies, considering our current understanding of the thermodynamic and kinetic aspects. We provide brief outlines for the experimental and computational characterization of such phenomena and offer an outlook toward next-generation SPCs likely to be discovered in the next decade.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202004535-sup-0001-misc_information.pdf10.2 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Susumu, K. Mitsuru, Bull. Chem. Soc. Jpn. 1998, 71, 1739–1753.
- 2S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.
- 3S. Kitahara, T. Matsumoto, SAE Trans. 1996, 105, 1353–1359.
- 4S. S. Kistler, Nature 1931, 127, 741.
- 5S. Kitagawa, R. Kitaura, S.-i. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334–2375; Angew. Chem. 2004, 116, 2388–2430.
- 6H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444-1-14.
- 7
- 7aI. M. Hönicke, I. Senkovska, V. Bon, I. A. Baburin, N. Bönisch, S. Raschke, J. D. Evans, S. Kaskel, Angew. Chem. Int. Ed. 2018, 57, 13780–13783; Angew. Chem. 2018, 130, 13976–13979;
- 7bO. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705.
- 8S. Kitagawa, M. Munakata, Trends Inorg. Chem. 1993, 3, 437–462.
- 9S. Horike, S. S. Nagarkar, T. Ogawa, S. Kitagawa, Angew. Chem. Int. Ed. 2020, 59, 6652–6664; Angew. Chem. 2020, 132, 6716–6729.
- 10
- 10aM. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa, K. Seki, Angew. Chem. Int. Ed. Engl. 1997, 36, 1725–1727; Angew. Chem. 1997, 109, 1844–1846;
- 10bH. Li, M. Eddaoudi, T. L. Groy, O. M. Yaghi, J. Am. Chem. Soc. 1998, 120, 8571–8572.
- 11H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276.
- 12A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062–6096.
- 13
- 13aS. Henke, M. T. Wharmby, G. Kieslich, I. Hante, A. Schneemann, Y. Wu, D. Daisenberger, A. K. Cheetham, Chem. Sci. 2018, 9, 1654–1660;
- 13bF.-X. Coudert, Chem. Mater. 2015, 27, 1905–1916;
- 13cJ. C. Tan, A. K. Cheetham, Chem. Soc. Rev. 2011, 40, 1059–1080;
- 13dL. R. Redfern, O. K. Farha, Chem. Sci. 2019, 10, 10666–10679.
- 14
- 14aG. Y. Gor, A. V. Neimark, Langmuir 2011, 27, 6926–6931;
- 14bG. Y. Gor, P. Huber, N. Bernstein, Appl. Phys. Rev. 2017, 4, 011303.
- 15C. Balzer, A. M. Waag, S. Gehret, G. Reichenauer, F. Putz, N. Hüsing, O. Paris, N. Bernstein, G. Y. Gor, A. V. Neimark, Langmuir 2017, 33, 5592–5602.
- 16
- 16aF.-X. Coudert, Phys. Chem. Chem. Phys. 2013, 15, 16012–16018;
- 16bJ. D. Evans, F.-X. Coudert, Chem. Mater. 2017, 29, 7833–7839.
- 17
- 17aF. Mouhat, D. Bousquet, A. Boutin, L. Bouëssel du Bourg, F.-X. Coudert, A. H. Fuchs, J. Phys. Chem. Lett. 2015, 6, 4265–4269;
- 17bA. V. Neimark, F.-X. Coudert, A. Boutin, A. H. Fuchs, J. Phys. Chem. Lett. 2010, 1, 445–449.
- 18
- 18aG. Férey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380–1399;
- 18bG. Férey, Dalton Trans. 2016, 45, 4073–4089;
- 18cS. K. Elsaidi, M. H. Mohamed, D. Banerjee, P. K. Thallapally, Coord. Chem. Rev. 2018, 358, 125–152;
- 18dT. D. Bennett, A. K. Cheetham, A. H. Fuchs, F.-X. Coudert, Nat. Chem. 2017, 9, 11;
- 18eZ. Chang, D.-H. Yang, J. Xu, T.-L. Hu, X.-H. Bu, Adv. Mater. 2015, 27, 5432–5441;
- 18fJ. H. Lee, S. Jeoung, Y. G. Chung, H. R. Moon, Coord. Chem. Rev. 2019, 389, 161–188;
- 18gM. Alhamami, H. Doan, C.-H. Cheng, Materials 2014, 7, 3198–3250;
- 18hS. B. Peh, A. Karmakar, D. Zhao, Trends Chem. 2020, 2, 199–213;
- 18iJ.-P. Zhang, H.-L. Zhou, D.-D. Zhou, P.-Q. Liao, X.-M. Chen, Natl. Sci. Rev. 2018, 5, 907–919;
- 18jF. Bigdeli, C. T. Lollar, A. Morsali, H.-C. Zhou, Angew. Chem. Int. Ed. 2020, 59, 4652–4669; Angew. Chem. 2020, 132, 4680–4699;
- 18kV. Bon, E. Brunner, A. Pöppl, S. Kaskel, Adv. Funct. Mater. 2020, 1907847.
- 19
- 19aD. Li, K. Kaneko, Chem. Phys. Lett. 2001, 335, 50–56;
- 19bR. Kitaura, K. Fujimoto, S.-i. Noro, M. Kondo, S. Kitagawa, Angew. Chem. Int. Ed. 2002, 41, 133–135;
10.1002/1521-3773(20020104)41:1<133::AID-ANIE133>3.0.CO;2-R CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 141–143.
- 20
- 20aP. Horcajada, F. Salles, S. Wuttke, T. Devic, D. Heurtaux, G. Maurin, A. Vimont, M. Daturi, O. David, E. Magnier, N. Stock, Y. Filinchuk, D. Popov, C. Riekel, G. Férey, C. Serre, J. Am. Chem. Soc. 2011, 133, 17839–17847;
- 20bS. Surblé, C. Serre, C. Mellot-Draznieks, F. Millange, G. Ferey, Chem. Commun. 2006, 284–286.
- 21R. Kitaura, K. Seki, G. Akiyama, S. Kitagawa, Angew. Chem. Int. Ed. 2003, 42, 428–431; Angew. Chem. 2003, 115, 444–447.
- 22F. ZareKarizi, M. Joharian, A. Morsali, J. Mater. Chem. A 2018, 6, 19288–19329.
- 23L. Sarkisov, R. L. Martin, M. Haranczyk, B. Smit, J. Am. Chem. Soc. 2014, 136, 2228–2231.
- 24
- 24aR. Haldar, N. Sikdar, T. K. Maji, Mater. Today 2015, 18, 97–116;
- 24bH.-L. Jiang, T. A. Makal, H.-C. Zhou, Coord. Chem. Rev. 2013, 257, 2232–2249;
- 24cT. K. Maji, R. Matsuda, S. Kitagawa, Nat. Mater. 2007, 6, 142–148;
- 24dF. Millange, C. Serre, G. Férey, Chem. Commun. 2002, 822–823.
- 25
- 25aT. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 2004, 10, 1373–1382;
- 25bS. Bourrelly, P. L. Llewellyn, C. Serre, F. Millange, T. Loiseau, G. Férey, J. Am. Chem. Soc. 2005, 127, 13519–13521.
- 26J. Wieme, K. Lejaeghere, G. Kresse, V. Van Speybroeck, Nat. Commun. 2018, 9, 4899.
- 27A. Boutin, F. X. Coudert, M. A. Springuel-Huet, A. V. Neimark, G. Férey, A. H. Fuchs, J. Phys. Chem. C 2010, 114, 22237.
- 28U. Stoeck, S. Krause, V. Bon, I. Senkovska, S. Kaskel, Chem. Commun. 2012, 48, 10841–10843.
- 29S. Krause, V. Bon, I. Senkovska, U. Stoeck, D. Wallacher, D. M. Többens, S. Zander, R. S. Pillai, G. Maurin, F.-X. Coudert, S. Kaskel, Nature 2016, 532, 348–352.
- 30J. D. Evans, L. Bocquet, F.-X. Coudert, Chem 2016, 1, 873–886.
- 31S. Krause, J. D. Evans, V. Bon, I. Senkovska, S. Ehrling, U. Stoeck, P. G. Yot, P. Iacomi, P. Llewellyn, G. Maurin, F.-X. Coudert, S. Kaskel, J. Phys. Chem. C 2018, 122, 19171–19179.
- 32S. Krause, J. D. Evans, V. Bon, I. Senkovska, P. Iacomi, F. Kolbe, S. Ehrling, E. Troschke, J. Getzschmann, D. M. Többens, A. Franz, D. Wallacher, P. G. Yot, G. Maurin, E. Brunner, P. L. Llewellyn, F.-X. Coudert, S. Kaskel, Nat. Commun. 2019, 10, 3632.
- 33
- 33aE. Alvarez, N. Guillou, C. Martineau, B. Bueken, B. Van de Voorde, C. Le Guillouzer, P. Fabry, F. Nouar, F. Taulelle, D. de Vos, J.-S. Chang, K. H. Cho, N. Ramsahye, T. Devic, M. Daturi, G. Maurin, C. Serre, Angew. Chem. Int. Ed. 2015, 54, 3664–3668; Angew. Chem. 2015, 127, 3735–3739;
- 33bP. G. Yot, L. Vanduyfhuys, E. Alvarez, J. Rodriguez, J.-P. Itie, P. Fabry, N. Guillou, T. Devic, I. Beurroies, P. L. Llewellyn, V. Van Speybroeck, C. Serre, G. Maurin, Chem. Sci. 2016, 7, 446–450.
- 34T. Loiseau, C. Mellot-Draznieks, H. Muguerra, G. Férey, M. Haouas, F. Taulelle, C. R. Chim. 2005, 8, 765–772.
- 35
- 35aT. K. Maji, G. Mostafa, R. Matsuda, S. Kitagawa, J. Am. Chem. Soc. 2005, 127, 17152–17153;
- 35bR. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 2005, 436, 238–241.
- 36
- 36aP. Lama, L. J. Barbour, J. Am. Chem. Soc. 2018, 140, 2145–2150;
- 36bL. Chen, J. P. S. Mowat, D. Fairen-Jimenez, C. A. Morrison, S. P. Thompson, P. A. Wright, T. Düren, J. Am. Chem. Soc. 2013, 135, 15763–15773;
- 36cV. Bon, N. Klein, I. Senkovska, A. Heerwig, J. Getzschmann, D. Wallacher, I. Zizak, M. Brzhezinskaya, U. Mueller, S. Kaskel, Phys. Chem. Chem. Phys. 2015, 17, 17471–17479;
- 36dS. Sen, N. Hosono, J.-J. Zheng, S. Kusaka, R. Matsuda, S. Sakaki, S. Kitagawa, J. Am. Chem. Soc. 2017, 139, 18313–18321;
- 36eJ. Seo, R. Matsuda, H. Sakamoto, C. Bonneau, S. Kitagawa, J. Am. Chem. Soc. 2009, 131, 12792–12800.
- 37
- 37aM. K. Taylor, T. Runčevski, J. Oktawiec, M. I. Gonzalez, R. L. Siegelman, J. A. Mason, J. Ye, C. M. Brown, J. R. Long, J. Am. Chem. Soc. 2016, 138, 15019–15026;
- 37bF. Salles, G. Maurin, C. Serre, P. L. Llewellyn, C. Knöfel, H. J. Choi, Y. Filinchuk, L. Oliviero, A. Vimont, J. R. Long, G. Férey, J. Am. Chem. Soc. 2010, 132, 13782–13788.
- 38J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, P. L. Llewellyn, N. Masciocchi, J. R. Long, Nature 2015, 527, 357.
- 39L. Vanduyfhuys, V. Van Speybroeck, Commun. Phys. 2019, 2, 102.
- 40J. D. Evans, S. Krause, S. Kaskel, M. B. Sweatman, L. Sarkisov, Chem. Sci. 2019, 10, 5011–5017.
- 41H. Li, L. Li, R.-B. Lin, W. Zhou, Z. Zhang, S. Xiang, B. Chen, EnergyChem 2019, 1, 100006.
10.1016/j.enchem.2019.100006 Google Scholar
- 42M. Kriesten, J. V. Schmitz, J. Siegel, C. E. Smith, M. Kaspereit, M. Hartmann, Eur. J. Inorg. Chem. 2019, 4700–4709.
- 43
- 43aA. Gonzalez-Nelson, F.-X. Coudert, M. A. van der Veen, Nanomaterials 2019, 9, 330;
- 43bS. Horike, R. Matsuda, D. Tanaka, S. Matsubara, M. Mizuno, K. Endo, S. Kitagawa, Angew. Chem. Int. Ed. 2006, 45, 7226–7230; Angew. Chem. 2006, 118, 7384–7388.
- 44D. I. Kolokolov, H. Jobic, A. G. Stepanov, V. Guillerm, T. Devic, C. Serre, G. Férey, Angew. Chem. Int. Ed. 2010, 49, 4791–4794; Angew. Chem. 2010, 122, 4901–4904.
- 45P. Martinez-Bulit, A. J. Stirk, S. J. Loeb, Trends Chem. 2019, 1, 588–600.
- 46
- 46aJ. Yang, J.-F. Ma, S. R. Batten, Chem. Commun. 2012, 48, 7899–7912;
- 46bA. Coskun, M. Hmadeh, G. Barin, F. Gándara, Q. Li, E. Choi, N. L. Strutt, D. B. Cordes, A. M. Z. Slawin, J. F. Stoddart, J.-P. Sauvage, O. M. Yaghi, Angew. Chem. Int. Ed. 2012, 51, 2160–2163; Angew. Chem. 2012, 124, 2202–2205.
- 47K. Zhu, C. A. O'Keefe, V. N. Vukotic, R. W. Schurko, S. J. Loeb, Nat. Chem. 2015, 7, 514–519.
- 48W. Danowski, T. van Leeuwen, S. Abdolahzadeh, D. Roke, W. R. Browne, S. J. Wezenberg, B. L. Feringa, Nat. Nanotechnol. 2019, 14, 488–494.
- 49
- 49aP. Kanoo, R. Haldar, S. K. Reddy, A. Hazra, S. Bonakala, R. Matsuda, S. Kitagawa, S. Balasubramanian, T. K. Maji, Chem. Eur. J. 2016, 22, 15864–15873;
- 49bP. Kanoo, R. Matsuda, H. Sato, L. Li, N. Hosono, S. Kitagawa, Chem. Eur. J. 2020, 26, 2148–2153.
- 50H. Deng, M. A. Olson, J. F. Stoddart, O. M. Yaghi, Nat. Chem. 2010, 2, 439–443.
- 51
- 51aJ. P. Dürholt, B. F. Jahromi, R. Schmid, ACS Cent. Sci. 2019, 5, 1440–1448;
- 51bS. Namsani, A. O. Yazaydin, Mol. Syst. Des. Eng. 2018, 3, 951–958.
- 52
- 52aR. Haldar, L. Heinke, C. Wöll, Adv. Mater. 2020, 32, 1905227;
- 52bC. L. Jones, A. J. Tansell, T. L. Easun, J. Mater. Chem. A 2016, 4, 6714–6723.
- 53A. Knebel, B. Geppert, K. Volgmann, D. I. Kolokolov, A. G. Stepanov, J. Twiefel, P. Heitjans, D. Volkmer, J. Caro, Science 2017, 358, 347–351.
- 54J. D. Evans, S. Krause, B. L. Feringa, Faraday Discuss. 2020, https://doi.org/10.1039/D0FD00016G.
- 55B. Tam, O. Yazaydin, J. Mater. Chem. A 2017, 5, 8690–8696.
- 56
- 56aS. Henke, A. Schneemann, A. Wütscher, R. A. Fischer, J. Am. Chem. Soc. 2012, 134, 9464–9474;
- 56bS. Henke, A. Schneemann, R. A. Fischer, Adv. Funct. Mater. 2013, 23, 5990–5996.
- 57S. Jeoung, S. Lee, J. H. Lee, S. Lee, W. Choe, D. Moon, H. R. Moon, Chem. Commun. 2019, 55, 8832–8835.
- 58
- 58aY. Zheng, H. Sato, P. Wu, H. J. Jeon, R. Matsuda, S. Kitagawa, Nat. Commun. 2017, 8, 100;
- 58bB. J. Furlong, M. J. Katz, J. Am. Chem. Soc. 2017, 139, 13280–13283.
- 59V. I. Nikolayenko, S. A. Herbert, L. J. Barbour, Chem. Commun. 2017, 53, 11142–11145.
- 60M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87, 1051–1069.
- 61J. W. McBain, J. Ferguson, J. Phys. Chem. 1927, 31, 564–590.
- 62G. Fraux, A. Boutin, A. H. Fuchs, F.-X. Coudert, Adsorption 2018, 24, 233–241.
- 63J.-J. Zheng, S. Kusaka, R. Matsuda, S. Kitagawa, S. Sakaki, J. Am. Chem. Soc. 2018, 140, 13958–13969.
- 64P. Iacomi, B. Zheng, S. Krause, S. Kaskel, G. Maurin, P. L. Llewellyn, Chem. Mater. 2020, 32, 3489–3498.
- 65Y. Ma, R. Matsuda, H. Sato, Y. Hijikata, L. Li, S. Kusaka, M. Foo, F. Xue, G. Akiyama, R. Yuan, S. Kitagawa, J. Am. Chem. Soc. 2015, 137, 15825–15832.
- 66F. Salles, A. Ghoufi, G. Maurin, R. G. Bell, C. Mellot-Draznieks, G. Férey, Angew. Chem. Int. Ed. 2008, 47, 8487–8491; Angew. Chem. 2008, 120, 8615–8619.
- 67Y. Gu, J.-J. Zheng, K.-i. Otake, K. Sugimoto, N. Hosono, S. Sakaki, F. Li, S. Kitagawa, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202003186; Angew. Chem. 2020, https://doi.org/10.1002/ange.202003186.
- 68
- 68aJ. Schaber, S. Krause, S. Paasch, I. Senkovska, V. Bon, D. M. Többens, D. Wallacher, S. Kaskel, E. Brunner, J. Phys. Chem. C 2017, 121, 5195–5200;
- 68bS. Krause, V. Bon, U. Stoeck, I. Senkovska, D. M. Tobbens, D. Wallacher, S. Kastel, Angew. Chem. Int. Ed. 2017, 56, 10676–10680; Angew. Chem. 2017, 129, 10816–10820.
- 69K. S. W. Sing, Pure Appl. Chem. 1985, 57, 603.
- 70D. Tanaka, K. Nakagawa, M. Higuchi, S. Horike, Y. Kubota, T. C. Kobayashi, M. Takata, S. Kitagawa, Angew. Chem. Int. Ed. 2008, 47, 3914–3918; Angew. Chem. 2008, 120, 3978–3982.
- 71
- 71aX. Li, X. Chen, F. Jiang, L. Chen, S. Lu, Q. Chen, M. Wu, D. Yuan, M. Hong, Chem. Commun. 2016, 52, 2277–2280;
- 71bJ. Su, S. Yuan, H.-Y. Wang, L. Huang, J.-Y. Ge, E. Joseph, J. Qin, T. Cagin, J.-L. Zuo, H.-C. Zhou, Nat. Commun. 2017, 8, 2008;
- 71cJ. Zhang, W. Kosaka, H. Miyasaka, Chem. Lett. 2019, 48, 1308–1311.
- 72L. Riekert, J. Phys. Chem. 1969, 73, 4384–4386.
- 73N. Chanut, A. Ghoufi, M.-V. Coulet, S. Bourrelly, B. Kuchta, G. Maurin, P. L. Llewellyn, Nat. Commun. 2020, 11, 1216.
- 74Y. Yue, J. A. Rabone, H. Liu, S. M. Mahurin, M.-R. Li, H. Wang, Z. Lu, B. Chen, J. Wang, Y. Fang, S. Dai, J. Phys. Chem. C 2015, 119, 9442–9449.
- 75H. Sato, W. Kosaka, R. Matsuda, A. Hori, Y. Hijikata, R. V. Belosludov, S. Sakaki, M. Takata, S. Kitagawa, Science 2014, 343, 167–170.
- 76P. Zhao, H. Fang, S. Mukhopadhyay, A. Li, S. Rudić, I. J. McPherson, C. C. Tang, D. Fairen-Jimenez, S. C. E. Tsang, S. A. T. Redfern, Nat. Commun. 2019, 10, 999.
- 77C. Gu, N. Hosono, J.-J. Zheng, Y. Sato, S. Kusaka, S. Sakaki, S. Kitagawa, Science 2019, 363, 387–391.
- 78Q. Gao, J. Xu, D. Cao, Z. Chang, X.-H. Bu, Angew. Chem. Int. Ed. 2016, 55, 15027–15030; Angew. Chem. 2016, 128, 15251–15254.
- 79J. Shang, G. Li, R. Singh, Q. Gu, K. M. Nairn, T. J. Bastow, N. Medhekar, C. M. Doherty, A. J. Hill, J. Z. Liu, P. A. Webley, J. Am. Chem. Soc. 2012, 134, 19246–19253.
- 80
- 80aP.-Q. Liao, N.-Y. Huang, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, Science 2017, 356, 1193–1196;
- 80bB. Zheng, L. L. Wang, J. C. Hui, L. Du, H. Du, M. Zhu, Dalton Trans. 2016, 45, 4346–4351.
- 81
- 81aH. S. Cho, J. Yang, X. Gong, Y.-B. Zhang, K. Momma, B. M. Weckhuysen, H. Deng, J. K. Kang, O. M. Yaghi, O. Terasaki, Nat. Chem. 2019, 11, 562–570;
- 81bS. Lee, H.-B. Bürgi, S. A. Alshmimri, O. M. Yaghi, J. Am. Chem. Soc. 2018, 140, 8958–8964;
- 81cH. Sung Cho, H. Deng, K. Miyasaka, Z. Dong, M. Cho, A. V. Neimark, J. Ku Kang, O. M. Yaghi, O. Terasaki, Nature 2015, 527, 503;
- 81dT. L. Easun, F. Moreau, Y. Yan, S. Yang, M. Schröder, Chem. Soc. Rev. 2017, 46, 239–274.
- 82
- 82aC. Serre, S. Bourrelly, A. Vimont, N. A. Ramsahye, G. Maurin, P. L. Llewellyn, M. Daturi, Y. Filinchuk, O. Leynaud, P. Barnes, G. Férey, Adv. Mater. 2007, 19, 2246–2251;
- 82bS. Jawahery, C. M. Simon, E. Braun, M. Witman, D. Tiana, B. Vlaisavljevich, B. Smit, Nat. Commun. 2017, 8, 13945.
- 83Y. J. Colón, R. Q. Snurr, Chem. Soc. Rev. 2014, 43, 5735–5749.
- 84
- 84aM. Klimakow, P. Klobes, A. F. Thünemann, K. Rademann, F. Emmerling, Chem. Mater. 2010, 22, 5216–5221;
- 84bB. Karadeniz, D. Žilić, I. Huskić, L. S. Germann, A. M. Fidelli, S. Muratović, I. Lončarić, M. Etter, R. E. Dinnebier, D. Barišić, N. Cindro, T. Islamoglu, O. K. Farha, T. Friščić, K. Užarević, J. Am. Chem. Soc. 2019, 141, 19214–19220;
- 84cD. Braga, S. L. Giaffreda, F. Grepioni, M. Polito, CrystEngComm 2004, 6, 459–462;
- 84dA. L. Garay, A. Pichon, S. L. James, Chem. Soc. Rev. 2007, 36, 846–855.
- 85
- 85aK. Kato, R. Hirose, M. Takemoto, S. Ha, J. Kim, M. Higuchi, R. Matsuda, S. Kitagawa, M. Takata, AIP Conf. Proc. 2010, 1234, 875–878;
- 85bR. Kitaura, S. Kitagawa, Y. Kubota, T. C. Kobayashi, K. Kindo, Y. Mita, A. Matsuo, M. Kobayashi, H.-C. Chang, T. C. Ozawa, M. Suzuki, M. Sakata, M. Takata, Science 2002, 298, 2358–2361.
- 86
- 86aC. Wiktor, M. Meledina, S. Turner, O. I. Lebedev, R. A. Fischer, J. Mater. Chem. A 2017, 5, 14969–14989;
- 86bL. R. Parent, C. H. Pham, J. P. Patterson, M. S. Denny, S. M. Cohen, N. C. Gianneschi, F. Paesani, J. Am. Chem. Soc. 2017, 139, 13973–13976;
- 86cY. Zhu, J. Ciston, B. Zheng, X. Miao, C. Czarnik, Y. Pan, R. Sougrat, Z. Lai, C.-E. Hsiung, K. Yao, I. Pinnau, M. Pan, Y. Han, Nat. Mater. 2017, 16, 532–536;
- 86dD. Zhang, Y. Zhu, L. Liu, X. Ying, C.-E. Hsiung, R. Sougrat, K. Li, Y. Han, Science 2018, 359, 675–679.
- 87
- 87aY. Li, K. Wang, W. Zhou, Y. Li, R. Vila, W. Huang, H. Wang, G. Chen, G.-H. Wu, Y. Tsao, H. Wang, R. Sinclair, W. Chiu, Y. Cui, Matter 2019, 1, 428–438;
- 87bB. Shen, X. Chen, D. Cai, H. Xiong, S. Jin, X. Liu, Y. Han, F. Wei, arXiv preprint arXiv:2001.09585v2, 2020.
- 88N. Hosono, A. Terashima, S. Kusaka, R. Matsuda, S. Kitagawa, Nat. Chem. 2019, 11, 109–116.
- 89T. Uemura, S. Horike, K. Kitagawa, M. Mizuno, K. Endo, S. Bracco, A. Comotti, P. Sozzani, M. Nagaoka, S. Kitagawa, J. Am. Chem. Soc. 2008, 130, 6781–6788.
- 90D. Umeyama, S. Horike, M. Inukai, Y. Hijikata, S. Kitagawa, Angew. Chem. Int. Ed. 2011, 50, 11706–11709; Angew. Chem. 2011, 123, 11910–11913.
- 91
- 91aM. Inukai, T. Fukushima, Y. Hijikata, N. Ogiwara, S. Horike, S. Kitagawa, J. Am. Chem. Soc. 2015, 137, 12183–12186;
- 91bM. Inukai, M. Tamura, S. Horike, M. Higuchi, S. Kitagawa, K. Nakamura, Angew. Chem. Int. Ed. 2018, 57, 8687–8690; Angew. Chem. 2018, 130, 8823–8826;
- 91cA. Comotti, S. Bracco, P. Sozzani, Acc. Chem. Res. 2016, 49, 1701–1710;
- 91dS. Horike, K. Kishida, Y. Watanabe, Y. Inubushi, D. Umeyama, M. Sugimoto, T. Fukushima, M. Inukai, S. Kitagawa, J. Am. Chem. Soc. 2012, 134, 9852–9855.
- 92
- 92aC. Volkringer, D. Popov, T. Loiseau, G. Férey, M. Burghammer, C. Riekel, M. Haouas, F. Taulelle, Chem. Mater. 2009, 21, 5695–5697;
- 92bM.-A. Springuel-Huet, A. Nossov, Z. Adem, F. Guenneau, C. Volkringer, T. Loiseau, G. Férey, A. Gédéon, J. Am. Chem. Soc. 2010, 132, 11599–11607.
- 93A. Comotti, S. Bracco, P. Sozzani, S. Horike, R. Matsuda, J. Chen, M. Takata, Y. Kubota, S. Kitagawa, J. Am. Chem. Soc. 2008, 130, 13664–13672.
- 94F. Kolbe, S. Krause, V. Bon, I. Senkovska, S. Kaskel, E. Brunner, Chem. Mater. 2019, 31, 6193–6201.
- 95V. J. Witherspoon, J. Xu, J. A. Reimer, Chem. Rev. 2018, 118, 10033–10048.
- 96
- 96aJ. Heinen, D. Dubbeldam, WIREs Comput. Mol. Sci. 2018, 8, e1363;
- 96bF.-X. Coudert, A. H. Fuchs, Coord. Chem. Rev. 2016, 307, 211–236;
- 96cG. Maurin, C. R. Chim. 2016, 19, 207–215;
- 96dS. O. Odoh, C. J. Cramer, D. G. Truhlar, L. Gagliardi, Chem. Rev. 2015, 115, 6051–6111.
- 97
- 97aH. C. Dong, H. L. Nguyen, H. M. Le, N. Thoai, Y. Kawazoe, D. Nguyen-Manh, Sci. Rep. 2018, 8, 16651;
- 97bL. Vanduyfhuys, S. M. J. Rogge, J. Wieme, S. Vandenbrande, G. Maurin, M. Waroquier, V. Van Speybroeck, Nat. Commun. 2018, 9, 204.
- 98
- 98aD. Nazarian, J. S. Camp, Y. G. Chung, R. Q. Snurr, D. S. Sholl, Chem. Mater. 2017, 29, 2521–2528;
- 98bA. S. Rosen, J. M. Notestein, R. Q. Snurr, J. Comput. Chem. 2019, 40, 1305–1318.
- 99P. I. Ravikovitch, A. V. Neimark, Langmuir 2006, 22, 10864–10868.
- 100K. Sillar, J. Sauer, J. Am. Chem. Soc. 2012, 134, 18354–18365.
- 101S. Bureekaew, S. Amirjalayer, M. Tafipolsky, C. Spickermann, T. K. Roy, R. Schmid, Phys. Status Solidi B 2013, 250, 1128–1141.
- 102S. M. J. Rogge, M. Waroquier, V. Van Speybroeck, Nat. Commun. 2019, 10, 4842.
- 103
- 103aL. Chen, C. A. Morrison, T. Düren, J. Phys. Chem. C 2012, 116, 18899–18909;
- 103bJ. G. McDaniel, S. Li, E. Tylianakis, R. Q. Snurr, J. R. Schmidt, J. Phys. Chem. C 2015, 119, 3143–3152;
- 103cA. Ahmed, S. Seth, J. Purewal, A. G. Wong-Foy, M. Veenstra, A. J. Matzger, D. J. Siegel, Nat. Commun. 2019, 10, 1568;
- 103dR. B. Getman, Y.-S. Bae, C. E. Wilmer, R. Q. Snurr, Chem. Rev. 2012, 112, 703–723.
- 104S. M. J. Rogge, R. Goeminne, R. Demuynck, J. J. Gutiérrez-Sevillano, S. Vandenbrande, L. Vanduyfhuys, M. Waroquier, T. Verstraelen, V. Van Speybroeck, Adv. Theor. Simul. 2019, 2, 1800177.
- 105F.-X. Coudert, M. Jeffroy, A. H. Fuchs, A. Boutin, C. Mellot-Draznieks, J. Am. Chem. Soc. 2008, 130, 14294–14302.
- 106
- 106aA. Boutin, M.-A. Springuel-Huet, A. Nossov, A. Gédéon, T. Loiseau, C. Volkringer, G. Férey, F.-X. Coudert, A. H. Fuchs, Angew. Chem. Int. Ed. 2009, 48, 8314–8317; Angew. Chem. 2009, 121, 8464–8467;
- 106bS. Krause, J. D. Evans, V. Bon, S. Senkovska, F.-X. Coudert, D. M. Többens, D. Wallacher, N. Grimm, S. Kaskel, Faraday Discuss. 2020, https://doi.org/10.1039/D0FD00013B.
- 107G. Y. Gor, N. Bernstein, Phys. Chem. Chem. Phys. 2016, 18, 9788–9798.
- 108
- 108aC. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, Nat. Chem. 2012, 4, 83;
- 108bS. Li, Y. G. Chung, R. Q. Snurr, Langmuir 2016, 32, 10368–10376;
- 108cG. Borboudakis, T. Stergiannakos, M. Frysali, E. Klontzas, I. Tsamardinos, G. E. Froudakis, npj Comput. Mater. 2017, 3, 40;
- 108dR. L. Greenaway, V. Santolini, M. J. Bennison, B. M. Alston, C. J. Pugh, M. A. Little, M. Miklitz, E. G. B. Eden-Rump, R. Clowes, A. Shakil, H. J. Cuthbertson, H. Armstrong, M. E. Briggs, K. E. Jelfs, A. I. Cooper, Nat. Commun. 2018, 9, 2849.
- 109C. M. Simon, C. Carraro, Proc. R. Soc. A 2019, 475, 20180703.
- 110J. Keupp, R. Schmid, Adv. Theor. Simul. 2019, 2, 1900117.
- 111
- 111aL. Liu, Z. Chen, J. Wang, D. Zhang, Y. Zhu, S. Ling, K.-W. Huang, Y. Belmabkhout, K. Adil, Y. Zhang, B. Slater, M. Eddaoudi, Y. Han, Nat. Chem. 2019, 11, 622–628;
- 111bM. J. Cliffe, W. Wan, X. Zou, P. A. Chater, A. K. Kleppe, M. G. Tucker, H. Wilhelm, N. P. Funnell, F.-X. Coudert, A. L. Goodwin, Nat. Commun. 2014, 5, 4176–4185.
- 112S. Dissegna, P. Vervoorts, C. L. Hobday, T. Düren, D. Daisenberger, A. J. Smith, R. A. Fischer, G. Kieslich, J. Am. Chem. Soc. 2018, 140, 11581–11584.
- 113T. D. Bennett, A. H. Fuchs, A. K. Cheetham, F.-X. Coudert, Dalton Trans. 2016, 45, 4058–4059.
- 114
- 114aS. Wang, N. Xhaferaj, M. Wahiduzzaman, K. Oyekan, X. Li, K. Wei, B. Zheng, A. Tissot, J. Marrot, W. Shepard, C. Martineau-Corcos, Y. Filinchuk, K. Tan, G. Maurin, C. Serre, J. Am. Chem. Soc. 2019, 141, 17207–17216;
- 114bH. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. Yaghi, Science 2010, 327, 846–850;
- 114cT. Lescouet, E. Kockrick, G. Bergeret, M. Pera-Titus, S. Aguado, D. Farrusseng, J. Mater. Chem. 2012, 22, 10287–10293;
- 114dT. Fukushima, S. Horike, Y. Inubushi, K. Nakagawa, Y. Kubota, M. Takata, S. Kitagawa, Angew. Chem. Int. Ed. 2010, 49, 4820–4824; Angew. Chem. 2010, 122, 4930–4934;
- 114eS. Horike, Y. Inubushi, T. Hori, T. Fukushima, S. Kitagawa, Chem. Sci. 2012, 3, 116–120.
- 115
- 115aA. Schneemann, P. Vervoorts, I. Hante, M. Tu, S. Wannapaiboon, C. Sternemann, M. Paulus, D. C. F. Wieland, S. Henke, R. A. Fischer, Chem. Mater. 2018, 30, 1667–1676;
- 115bF. Nouar, T. Devic, H. Chevreau, N. Guillou, E. Gibson, G. Clet, M. Daturi, A. Vimont, J. M. Grenèche, M. I. Breeze, R. I. Walton, P. L. Llewellyn, C. Serre, Chem. Commun. 2012, 48, 10237–10239.
- 116M. Mendt, P. Vervoorts, A. Schneemann, R. A. Fischer, A. Pöppl, J. Phys. Chem. C 2019, 123, 2940–2952.
- 117
- 117aY. Sakata, S. Furukawa, M. Kondo, K. Hirai, N. Horike, Y. Takashima, H. Uehara, N. Louvain, M. Meilikhov, T. Tsuruoka, S. Isoda, W. Kosaka, O. Sakata, S. Kitagawa, Science 2013, 339, 193–196;
- 117bM. Shivanna, Q.-Y. Yang, A. Bajpai, S. Sen, N. Hosono, S. Kusaka, T. Pham, K. A. Forrest, B. Space, S. Kitagawa, M. J. Zaworotko, Sci. Adv. 2018, 4, eaaq1636.
- 118H. Yang, T. X. Trieu, X. Zhao, Y. Wang, Y. Wang, P. Feng, X. Bu, Angew. Chem. Int. Ed. 2019, 58, 11757–11762; Angew. Chem. 2019, 131, 11883–11888.
- 119
- 119aC. Zhang, J. A. Gee, D. S. Sholl, R. P. Lively, J. Phys. Chem. C 2014, 118, 20727–20733;
- 119bS. Tanaka, K. Fujita, Y. Miyake, M. Miyamoto, Y. Hasegawa, T. Makino, S. Van der Perre, J. Cousin Saint Remi, T. Van Assche, G. V. Baron, J. F. M. Denayer, J. Phys. Chem. C 2015, 119, 28430–28439.
- 120S. Krause, V. Bon, I. Senkovska, D. M. Többens, D. Wallacher, R. S. Pillai, G. Maurin, S. Kaskel, Nat. Commun. 2018, 9, 1573.
- 121T. Kundu, M. Wahiduzzaman, B. B. Shah, G. Maurin, D. Zhao, Angew. Chem. Int. Ed. 2019, 58, 8073–8077; Angew. Chem. 2019, 131, 8157–8161.
- 122
- 122aS. Krause, V. Bon, H. Du, R. E. Dunin-Borkowski, U. Stoeck, I. Senkovska, S. Kaskel, Beilstein J. Nanotechnol. 2019, 10, 1737–1744;
- 122bN. Kavoosi, V. Bon, I. Senkovska, S. Krause, C. Atzori, F. Bonino, J. Pallmann, S. Paasch, E. Brunner, S. Kaskel, Dalton Trans. 2017, 46, 4685–4695.
- 123V. Bon, N. Kavoosi, I. Senkovska, S. Kaskel, ACS Appl. Mater. Interfaces 2015, 7, 22292–22300.
- 124N. Yanai, K. Kitayama, Y. Hijikata, H. Sato, R. Matsuda, Y. Kubota, M. Takata, M. Mizuno, T. Uemura, S. Kitagawa, Nat. Mater. 2011, 10, 787.
- 125M. Ohba, K. Yoneda, G. Agustí, M. C. Muñoz, A. B. Gaspar, J. A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sakaki, S. Kitagawa, Angew. Chem. Int. Ed. 2009, 48, 4767–4771; Angew. Chem. 2009, 121, 4861–4865.
- 126G. Mínguez Espallargas, E. Coronado, Chem. Soc. Rev. 2018, 47, 533–557.
- 127
- 127aA. Ghoufi, K. Benhamed, L. Boukli-Hacene, G. Maurin, ACS Cent. Sci. 2017, 3, 394–398;
- 127bR. Schmid, ACS Cent. Sci. 2017, 3, 369–371.
- 128S. Kitagawa, Acc. Chem. Res. 2017, 50, 514–516.
- 129S. Marbach, D. S. Dean, L. Bocquet, Nat. Phys. 2018, 14, 1108–1113.
- 130S. Yuan, L. Zou, H. Li, Y.-P. Chen, J. Qin, Q. Zhang, W. Lu, M. B. Hall, H.-C. Zhou, Angew. Chem. Int. Ed. 2016, 55, 10776–10780; Angew. Chem. 2016, 128, 10934–10938.
- 131A. B. Kanj, J. Bürck, S. Grosjean, S. Bräse, L. Heinke, Chem. Commun. 2019, 55, 8776–8779.
- 132
- 132aK. Titov, Z. Zeng, M. R. Ryder, A. K. Chaudhari, B. Civalleri, C. S. Kelley, M. D. Frogley, G. Cinque, J.-C. Tan, J. Phys. Chem. Lett. 2017, 8, 5035–5040;
- 132bM. R. Ryder, L. Donà, J. G. Vitillo, B. Civalleri, ChemPlusChem 2018, 83, 308–316.
- 133S. Sakaida, K. Otsubo, O. Sakata, C. Song, A. Fujiwara, M. Takata, H. Kitagawa, Nat. Chem. 2016, 8, 377–383.
- 134M. Kato, H. Ito, M. Hasegawa, K. Ishii, Chem. Eur. J. 2019, 25, 5105–5112.
Citing Literature
September 1, 2020
Pages 15325-15341