The Rapid and Large-Scale Production of Carbon Quantum Dots and their Integration with Polymers
Xiang-Yun Du
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorProf. Cai-Feng Wang
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorProf. Guan Wu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Su Chen
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorXiang-Yun Du
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorProf. Cai-Feng Wang
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorProf. Guan Wu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Su Chen
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009 P. R. China
Search for more papers by this authorGraphical Abstract
The latest developments in the large-scale production of carbon quantum dots by using microwave, ultrasonic, plasma, magnetic hyperthermia, and microfluidic techniques are outlined. The synthetic methods for generating carbon dot/polymer composites are summarized, whereby the carbon quantum dots can serve as fillers, monomers, or initiators. Promising applications, current challenges, and future perspectives are also highlighted and discussed.
Abstract
Carbon quantum dots (CDs) have inspired vast interest because of their excellent photoluminescence (PL) performances and their promising applications in optoelectronic, biomedical, and sensing fields. The development of effective approaches for the large-scale production of CDs may greatly promote the further advancement of their practical applications. In this Minireview, the newly emerging methods for the large-scale production of CDs are summarized, such as microwave, ultrasonic, plasma, magnetic hyperthermia, and microfluidic techniques. The use of the available strategies for constructing CD/polymer composites with intriguing solid-state PL is then described. Particularly, the multiple roles of CDs are emphasized, including as fillers, monomers, and initiators. Moreover, typical applications of CD/polymer composites in light-emitting diodes, fluorescent printing, and biomedicine are outlined. Finally, we discuss current problems and speculate on their future development.
Conflict of interest
The authors declare no conflict of interest.
References
- 1L. Jiang, H. Ding, M. Xu, X. Hu, S. Li, M. Zhang, Q. Zhang, Q. Wang, S. Lu, Y. Tian, H. Bi, Small 2020, 16, 2000680.
- 2K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai, H. Lin, Angew. Chem. Int. Ed. 2015, 54, 5360–5363; Angew. Chem. 2015, 127, 5450–5453.
- 3H. Ding, J.-S. Wei, P. Zhang, Z.-Y. Zhou, Q.-Y. Gao, H.-M. Xiong, Small 2018, 14, 1800612.
- 4K. Jiang, Y. Wang, X. Gao, C. Cai, H. Lin, Angew. Chem. Int. Ed. 2018, 57, 6216–6220; Angew. Chem. 2018, 130, 6324–6328.
- 5X. Miao, D. Qu, D. Yang, B. Nie, Y. Zhao, H. Fan, Z. Sun, Adv. Mater. 2018, 30, 1704740.
- 6C. Xia, S. Zhu, T. Feng, M. Yang, B. Yang, Adv. Sci. 2019, 6, 1901316.
- 7Z. Tian, X. T. Zhang, D. Li, D. Zhou, P. T. Jing, D. Z. Shen, S. N. Qu, R. Zboril, A. L. Rogach, Adv. Opt. Mater. 2017, 5, 1700416.
- 8H. Jia, Z. Wang, T. Yuan, F. Yuan, X. Li, Y. Li, Z. Tan, L. Fan, S. Yang, Adv. Sci. 2019, 1900397.
- 9X. Guo, C.-F. Wang, Z.-Y. Yu, L. Chen, S. Chen, Chem. Commun. 2012, 48, 2692–2694.
- 10Q. Q. Zhang, T. Yang, R. S. Li, H. Y. Zou, Y. F. Li, J. Guo, X. D. Liu, C. Z. Huang, Nanoscale 2018, 10, 14705–14711.
- 11L. Zhu, Y. Yin, C.-F. Wang, S. Chen, J. Mater. Chem. C 2013, 1, 4925–4932.
- 12X. Zhang, Z. Zhang, F. Hu, D. Li, D. Zhou, P. Jing, F. Du, S. Qu, ACS Sustainable Chem. Eng. 2019, 7, 9848–9856.
- 13Q. Li, H. Cheng, X. Wu, C.-F. Wang, G. Wu, S. Chen, J. Mater. Chem. A 2018, 6, 14112–14119.
- 14J. S. Wei, C. Ding, P. Zhang, H. Ding, X. Q. Niu, Y. Y. Ma, C. Li, Y. G. Wang, H. M. Xiong, Adv. Mater. 2019, 31, 1806197.
- 15K. Jiang, Y. Wang, C. Cai, H. Lin, Adv. Mater. 2018, 30, 1700416.
- 16C.-L. Shen, Q. Lou, C.-F. Lv, J.-H. Zang, S.-N. Qu, L. Dong, C.-X. Shan, Adv. Sci. 2019, 6, 1802331.
- 17Q. Jia, J. Ge, W. Liu, X. Zheng, S. Chen, Y. Wen, H. Zhang, P. Wang, Adv. Mater. 2018, 30, 1706090.
- 18H. Wang, J. Yi, S. Mukherjee, P. Banerjee, S. Zhou, Nanoscale 2014, 6, 13001–13011.
- 19X. Y. Xu, R. Ray, Y. L. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 2004, 126, 12736–12737.
- 20C.-F. Wang, R. Cheng, W.-Q. Ji, K.-Z. Ma, L.-T. Ling, S. Chen, ACS Appl. Mater. Interfaces 2018, 10, 39205–39213.
- 21H. P. Liu, T. Ye, C. D. Mao, Angew. Chem. Int. Ed. 2007, 46, 6473–6475; Angew. Chem. 2007, 119, 6593–6595.
- 22R. L. Liu, D. Q. Wu, S. H. Liu, K. Koynov, W. Knoll, Q. Li, Angew. Chem. Int. Ed. 2009, 48, 4598–4601; Angew. Chem. 2009, 121, 4668–4671.
- 23F. Yuan, Z. Wang, X. Li, Y. Li, Z. Tan, L. Fan, S. Yang, Adv. Mater. 2017, 29, 1604436.
- 24Y. Choi, S. Jo, A. Chae, Y. K. Kim, J. E. Park, D. Lim, S. Y. Park, I. In, ACS Appl. Mater. Interfaces 2017, 9, 27883–27893.
- 25S. Y. Park, H. U. Lee, E. S. Park, S. C. Lee, J. W. Lee, S. W. Jeong, C. H. Kim, Y. C. Lee, Y. S. Huh, J. Lee, ACS Appl. Mater. Interfaces 2014, 6, 3365–3370.
- 26H. Dang, L.-K. Huang, Y. Zhang, C.-F. Wang, S. Chen, Ind. Eng. Chem. Res. 2016, 55, 5335–5341.
- 27C.-X. Li, C. Yu, C.-F. Wang, S. Chen, J. Mater. Sci. 2013, 48, 6307–6311.
- 28H. Q. Jiang, F. Chen, M. G. Lagally, F. S. Denes, Langmuir 2010, 26, 1991–1995.
- 29J. Wang, C.-F. Wang, S. Chen, Angew. Chem. Int. Ed. 2012, 51, 9297–9301; Angew. Chem. 2012, 124, 9431–9435.
- 30S. Y. Park, C. Y. Lee, H. R. An, H. Kim, Y. C. Lee, E. C. Park, H. S. Chun, H. Y. Yang, S. H. Choi, H. S. Kim, K. S. Kang, H. G. Park, J. P. Kim, Y. Choi, J. Lee, H. U. Lee, Nanoscale 2017, 9, 9210–9217.
- 31J. Park, P. Bazylewski, V. Wong, H. Shah, G. Fanchini, Carbon 2019, 146, 28–35.
- 32J. Kim, J. S. Suh, ACS nano 2014, 8, 4190–4196.
- 33Z. Zhu, R. Cheng, L. Ling, Q. Li, S. Chen, Angew. Chem. Int. Ed. 2020, 59, 3099–3105; Angew. Chem. 2020, 132, 3123–3129.
- 34S. Gomez-de Pedro, A. Salinas-Castillo, M. Ariza-Avidad, A. Lapresta-Fernandez, C. Sanchez-Gonzalez, C. S. Martinez-Cisneros, M. Puyol, L. F. Capitan-Vallvey, J. Alonso-Chamarro, Nanoscale 2014, 6, 6018–6024.
- 35M. Shao, Q. Yu, N. Jing, Y. Cheng, D. Wang, Y. D. Wang, J. H. Xu, Lab chip 2019, 19, 3974–3978.
- 36L. Rao, Y. Tang, Z. Li, X. Ding, G. Liang, H. Lu, C. Yan, K. Tang, B. Yu, Mater. Sci. Eng. C 2017, 81, 213–223.
- 37P. Long, Y. Feng, C. Cao, Y. Li, J. Han, S. Li, C. Peng, Z. Li, W. Feng, Adv. Funct. Mater. 2018, 28, 1800791.
- 38D. Venkatakrishnarao, C. Sahoo, R. Vattikunta, M. Annadhasan, S. R. G. Naraharisetty, R. Chandrasekar, Adv. Opt. Mater. 2017, 5, 1700695.
- 39M. Sun, S. Qu, Z. Hao, W. Ji, P. Jing, H. Zhang, L. Zhang, J. Zhao, D. Shen, Nanoscale 2014, 6, 13076–13081.
- 40S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Angew. Chem. Int. Ed. 2013, 52, 3953–3957; Angew. Chem. 2013, 125, 4045–4049.
- 41C. Zhu, Y. Fu, C. Liu, Y. Liu, L. Hu, J. Liu, I. Bello, H. Li, N. Liu, S. Guo, H. Huang, Y. Lifshitz, S. T. Lee, Z. Kang, Adv. Mater. 2017, 29, 1701399.
- 42S. Bhattacharya, R. S. Phatake, S. Nabha Barnea, N. Zerby, J. J. Zhu, R. Shikler, N. G. Lemcoff, R. Jelinek, ACS Nano 2019, 13, 1433–1442.
- 43G. Yang, X. Wan, Y. Liu, R. Li, Y. Su, X. Zeng, J. Tang, ACS Appl. Mater. Interfaces 2016, 8, 34744–34754.
- 44N. Shauloff, S. Bhattacharya, R. Jelinek, Carbon 2019, 152, 363–371.
- 45W. Liu, X. Yan, J. Chen, Y. Feng, Q. Xue, Nanoscale 2013, 5, 6053–6062.
- 46H. Zhu, X. L. Wang, Y. L. Li, Z. J. Wang, F. Yang, X. R. Yang, Chem. Commun. 2009, 5118–5120.
- 47Y. Q. Zhang, X. Y. Liu, Y. Fan, X. Y. Guo, L. Zhou, Y. Lv, J. Lin, Nanoscale 2016, 8, 15281–15287.
- 48K. S. Suslick, D. J. Flannigan, Annu. Rev. Phys. Chem. 2008, 59, 659–683.
- 49S. Yang, J. Sun, X. Li, W. Zhou, Z. Wang, P. He, G. Ding, X. Xie, Z. Kang, M. Jiang, J. Mater. Chem. A 2014, 2, 8660.
- 50P. Wang, C. Liu, W. Tang, S. Ren, Z. Chen, Y. Guo, R. Rostamian, S. Zhao, J. Li, S. Liu, S. Li, ACS Appl. Mater. Interfaces 2019, 11, 19301–19307.
- 51Y. H. Chen, M. T. Zheng, Y. Xiao, H. W. Dong, H. R. Zhang, J. L. Zhuang, H. Hu, B. F. Lei, Y. L. Liu, Adv. Mater. 2016, 28, 312–318.
- 52Z. F. Wang, F. L. Yuan, X. H. Li, Y. C. Li, H. Z. Zhong, L. Z. Fan, S. H. Yang, Adv. Mater. 2017, 29, 1702910.
- 53K. Junka, J. Guo, I. Filpponen, J. Laine, O. J. Rojas, Biomacromolecules 2014, 15, 876–881.
- 54Z. Tian, D. Li, E. V. Ushakova, V. G. Maslov, D. Zhou, P. Jing, D. Shen, S. Qu, A. L. Rogach, Adv. Sci. 2018, 5, 1800795.
- 55Y. H. Deng, D. X. Zhao, X. Chen, F. Wang, H. Song, D. Z. Shen, Chem. Commun. 2013, 49, 5751–5753.
- 56Q. Wu, X. Wang, S. A. Rasaki, T. Thomas, C. Wang, C. Zhang, M. Yang, J. Mater. Chem. C 2018, 6, 4508–4515.
- 57V. B. Kumar, A. K. Sahu, A. S. M. Mohsin, X. Li, A. Gedanken, ACS Appl. Mater. Interfaces 2017, 9, 28930–28938.
- 58M. Lin, H. Y. Zou, T. Yang, Z. X. Liu, H. Liu, C. Z. Huang, Nanoscale 2016, 8, 2999–3007.
- 59S.-S. Liu, C.-F. Wang, C.-X. Li, J. Wang, L.-H. Mao, S. Chen, J. Mater. Chem. C 2014, 2, 6477.
- 60X. Guo, C.-F. Wang, L.-H. Mao, J. Zhang, Z.-Y. Yu, S. Chen, Nanotechnology 2013, 24, 135602.
- 61S. Qu, D. Zhou, D. Li, W. Ji, P. Jing, D. Han, L. Liu, H. Zeng, D. Shen, Adv. Mater. 2016, 28, 3516–3521.
- 62Y. Liu, M. Zhang, Y. Wu, R. Zhang, Y. Cao, X. Xu, X. Chen, L. Cai, Q. Xu, Chem. Commun. 2019, 55, 12164–12167.
- 63B. Ryplida, K. D. Lee, I. In, S. Y. Park, Adv. Funct. Mater. 2019, 29, 1903209.
- 64C. Wang, T. Hu, Y. Chen, Y. Xu, Q. Song, ACS Appl. Mater. Interfaces 2019, 11, 22332–22338.
- 65L. Zhou, B. Z. He, J. C. Huang, Chem. Commun. 2013, 49, 8078–8080.
- 66H. Shao, C.-F. Wang, S. Chen, C. Xu, J. Polym. Sci. Part A 2014, 52, 912–920.
- 67H. Wang, J. Yi, Y. Yu, S. Zhou, Nanoscale 2017, 9, 509–516.
- 68Y. Li, Z. Z. Huang, Y. Weng, H. Tan, Chem. Commun. 2019, 55, 11450–11453.
- 69Q.-L. Chen, C.-F. Wang, S. Chen, J. Mater. Sci. 2013, 48, 2352–2357.
- 70B. Devadas, T. Imae, ACS Sustainable Chem. Eng. 2018, 6, 127–134.
- 71S. Mondal, U. Rana, S. Malik, Chem. Commun. 2015, 51, 12365–12368.
- 72Q. Zhu, L. Zhang, K. Van Vliet, A. Miserez, N. Holten-Andersen, ACS Appl. Mater. Interfaces 2018, 10, 10409–10418.
- 73P. Zhang, W. Li, X. Zhai, C. Liu, L. Dai, W. Liu, Chem. Commun. 2012, 48, 10431–10433.
- 74D. Mosconi, D. Mazzier, S. Silvestrini, A. Privitera, C. Marega, L. Franco, A. Moretto, ACS nano 2015, 9, 4156–4164.
- 75P. R. Sreenath, S. Mandal, S. Singh, P. Das, A. K. Bhowmick, K. Dinesh Kumar, Polymer 2019, 175, 283–293.
- 76S. Wu, M. Qiu, Z. Tang, J. Liu, B. Guo, Macromolecules 2017, 50, 3244–3253.
- 77C. Shen, Y. Zhao, H. Liu, Y. Jiang, H. Li, S. Lan, H. Bao, B. Yang, Q. Lin, Polym. Chem. 2018, 9, 2478–2483.
- 78S. Gogoi, M. Kumar, B. B. Mandal, N. Karak, Compos. Sci. Technol. 2015, 118, 39–46.
- 79R. Duarah, Y. P. Singh, P. Gupta, B. B. Mandal, N. Karak, Biofabrication 2016, 8, 045013.
- 80J. Tan, R. Zou, J. Zhang, W. Li, L. Zhang, D. Yue, Nanoscale 2016, 8, 4742–4747.
- 81C. Zhu, M. Yan, X. Shi, J. Fan, H. Bi, RSC Adv. 2016, 6, 38470–38474.
- 82X.-Y. Du, J. Shen, J. Zhang, L. Ling, C.-F. Wang, S. Chen, Polym. Chem. 2018, 9, 420–427.
- 83J. Jiang, G. Ye, Z. Wang, Y. Lu, J. Chen, K. Matyjaszewski, Angew. Chem. Int. Ed. 2018, 57, 12037–12042; Angew. Chem. 2018, 130, 12213–12218.
- 84M. Yan, M. Zhou, J. Chen, T. Zhao, L. Tang, H. Bi, Mater. Sci. Eng. C 2017, 79, 76–83.
- 85C. Kütahya, P. Wang, S. Li, S. Liu, J. Li, Z. Chen, B. Strehmel, Angew. Chem. Int. Ed. 2020, 59, 3166–3171; Angew. Chem. 2020, 132, 3192–3197.
- 86M. Moorthy, V. B. Kumar, Z. Porat, A. Gedanken, New J. Chem. 2018, 42, 535–540.
- 87M. Maruthapandi, V. B. Kumar, A. Gedanken, ACS Omega 2018, 3, 7061–7068.
- 88M. Maruthapandi, J. H. T. Luong, A. Gedanken, New J. Chem. 2019, 43, 1926–1935.
- 89M. Maruthapandi, A. P. Nagvenkar, I. Perelshtein, A. Gedanken, ACS Appl. Polym. Mater. 2019, 1, 1181–1186.
- 90S. C. Hess, F. A. Permatasari, H. Fukazawa, E. M. Schneider, R. Balgis, T. Ogi, K. Okuyama, W. J. Stark, J. Mater. Chem. A 2017, 5, 5187–5194.
- 91Y. Wang, X. Wang, Z. Geng, Y. Xiong, W. Wu, Y. Chen, J. Mater. Chem. B 2015, 3, 7511–7517.
- 92Z. Xie, F. Wang, C. Y. Liu, Adv. Mater. 2012, 24, 1716–1721.
- 93Y. Wang, Z. Yin, Z. Xie, X. Zhao, C. Zhou, S. Zhou, P. Chen, ACS Appl. Mater. Interfaces 2016, 8, 9961–9968.
- 94K. Jiang, L. Zhang, J. F. Lu, C. X. Xu, C. Z. Cai, H. W. Lin, Angew. Chem. Int. Ed. 2016, 55, 7231–7235; Angew. Chem. 2016, 128, 7347–7351.
- 95J. Chen, S. Li, Y. Zhang, W. Wang, X. Zhang, Y. Zhao, Y. Wang, H. Bi, Adv. Healthcare Mater. 2017, 6, 1700746.