Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization
Corresponding Author
Prof. Katsuhiko Ariga
WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561 Japan
Search for more papers by this authorDr. Xiaofang Jia
WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorDr. Jingwen Song
Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561 Japan
Search for more papers by this authorDr. Jonathan P. Hill
WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorCorresponding Author
Prof. David Tai Leong
Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585 Singapore
Search for more papers by this authorDr. Yi Jia
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Junbai Li
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Katsuhiko Ariga
WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561 Japan
Search for more papers by this authorDr. Xiaofang Jia
WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorDr. Jingwen Song
Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561 Japan
Search for more papers by this authorDr. Jonathan P. Hill
WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorCorresponding Author
Prof. David Tai Leong
Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585 Singapore
Search for more papers by this authorDr. Yi Jia
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Junbai Li
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorGraphical Abstract
Simple self-assembly methods cannot be used to attain high-level organizations such as those found in biological systems. The introduction of non-equilibrium processes and harmonization of multiple actions is required. As a novel methodology beyond self-assembly, nanoarchitectonics, whose main conceptual aim is the formation of functional materials from nanoscopic units through the fusion of different scientific disciplines, has been proposed for the creation of bio-like high functionality hierarchically organized structures.
Abstract
Incorporation of non-equilibrium actions in the sequence of self-assembly processes would be an effective means to establish bio-like high functionality hierarchical assemblies. As a novel methodology beyond self-assembly, nanoarchitectonics, which has as its aim the fabrication of functional materials systems from nanoscopic units through the methodological fusion of nanotechnology with other scientific disciplines including organic synthesis, supramolecular chemistry, microfabrication, and bio-process, has been applied to this strategy. The application of non-equilibrium factors to conventional self-assembly processes is discussed on the basis of examples of directed assembly, Langmuir–Blodgett assembly, and layer-by-layer assembly. In particular, examples of the fabrication of hierarchical functional structures using bio-active components such as proteins or by the combination of bio-components and two-dimensional nanomaterials, are described. Methodologies described in this review article highlight possible approaches using the nanoarchitectonics concept beyond self-assembly for creation of bio-like higher functionalities and hierarchical structural organization.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aJ. Gu, C. Liang, X. Zhao, B. Gan, H. Qiu, Y. Guo, X. Yang, Q. Zhang, D.-Y. Wang, Comput. Sci. Technol. 2017, 139, 83–89;
- 1bC. Xia, J. Guo, P. Li, X. Zhang, H. N. Alshareef, Angew. Chem. Int. Ed. 2018, 57, 3943–3948; Angew. Chem. 2018, 130, 4007–4012;
- 1cM. M. Velencoso, A. Battig, J. C. Markwart, B. Schartel, F. R. Wurm, Angew. Chem. Int. Ed. 2018, 57, 10450–10467; Angew. Chem. 2018, 130, 10608–10626; V. N. Chi, W.-H. Chiang, K. C.-W. Wu, Bull. Chem. Soc. Jpn. 2019, 92, 1430–1435.
- 2
- 2aD. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 2016, 351, 361–365;
- 2bM. Saliba, J.-P. Correa-Baena, M. Gratzel, A. Hagfeldt, A. Abate, Angew. Chem. Int. Ed. 2018, 57, 2554–2569; Angew. Chem. 2018, 130, 2582–2598;
- 2cT. Miyasaka, Bull. Chem. Soc. Jpn. 2018, 91, 1058–1068;
- 2dN. Roy, N. Suzuki, C. Terashima, A. Fujishima, Bull. Chem. Soc. Jpn. 2019, 92, 178–192.
- 3
- 3aA. Yoshino, Angew. Chem. Int. Ed. 2012, 51, 5798–5800; Angew. Chem. 2012, 124, 5898–5900;
- 3bP. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 2018, 57, 102–120; Angew. Chem. 2018, 130, 106–126;
- 3cS. Stauss, I. Honma, Bull. Chem. Soc. Jpn. 2018, 91, 492–505;
- 3dM. Watanabe, K. Dokko, K. Ueno, M. L. Thomas, Bull. Chem. Soc. Jpn. 2018, 91, 1660–1682.
- 4
- 4aT. M. Swager, Angew. Chem. Int. Ed. 2018, 57, 4248–4257; Angew. Chem. 2018, 130, 4325–4335;
- 4bY. Zhang, S. Yuan, G. Day, X. Wang, X. Yang, H.-C. Zhou, Coord. Chem. Rev. 2018, 354, 28–45;
- 4cR. Tepper, U. S. Schubert, Angew. Chem. Int. Ed. 2018, 57, 6004–6016; Angew. Chem. 2018, 130, 6110–6123;
- 4dG. Sai-Anand, A. Sivanesan, M. R. Benzigar, G. Singh, A.-I. Gopalan, A. V. Baskar, H. Ilbeygi, K. Ramadass, V. Kambala, A. Vinu, Bull. Chem. Soc. Jpn. 2019, 92, 216–244.
- 5
- 5aH. Li, K. Wang, Y. Sun, C. T. Lollar, J. Li, H.-C. Zhou, Mater. Today 2018, 21, 108–121;
- 5bQ. Wang, T. Asoh, H. Uyama, Bull. Chem. Soc. Jpn. 2018, 91, 1138–1140;
- 5cX. Zhao, Y. Wang, D.-S. Li, X. Bu, P. Feng, Adv. Mater. 2018, 30, 1705189;
- 5dS. Kim, H. Wang, Y. M. Lee, Angew. Chem. Int. Ed. 2019, 58, 17512–17527; Angew. Chem. 2019, 131, 17674–17689.
- 6
- 6aK. K. R. Datta, B. V. S. Reddy, K. Ariga, A. Vinu, Angew. Chem. Int. Ed. 2010, 49, 5961–5965; Angew. Chem. 2010, 122, 6097–6101;
- 6bW. Chaikittisilp, N. L. Torad, C. Li, M. Imura, N. Suzuki, S. Ishihara, K. Ariga, Y. Yamauchi, Chem. Eur. J. 2014, 20, 4217–4221;
- 6cL. Marzo, S. K. Pagire, O. Reiser, B. Koenig, Angew. Chem. Int. Ed. 2018, 57, 10034–10072; Angew. Chem. 2018, 130, 10188–10228;
- 6dJ. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 2018, 8, 1701503;
- 6eA. Glotov, A. Stavitskaya, Y. Chudakov, E. Ivanov, W. Huang, V. Vinokurov, A. Zolotukhina, A. Maximov, E. Karakhanov, Y. Lvov, Bull. Chem. Soc. Jpn. 2019, 92, 61–69.
- 7
- 7aT. Salthammer, Y. Zhang, J. Mo, H. M. Koch, C. J. Weschler, Angew. Chem. Int. Ed. 2018, 57, 12228–12263; Angew. Chem. 2018, 130, 12406–12443;
- 7bZ. Tan, S. Chen, X. Peng, L. Zhang, C. Gao, Science 2018, 360, 518–521;
- 7cZ. Yang, T. Asoh, H. Uyama, Bull. Chem. Soc. Jpn. 2019, 92, 1453–1461;
- 7dR.-B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen, Coord. Chem. Rev. 2019, 378, 87–103.
- 8
- 8aN. Ankenbruck, T. Courtney, Y. Naro, A. Deiters, Angew. Chem. Int. Ed. 2018, 57, 2768–2798; Angew. Chem. 2018, 130, 2816–2848;
- 8bJ. Sun, D. Zhang, W. Zhao, Q. Ji, K. Ariga, Bull. Chem. Soc. Jpn. 2019, 92, 275–282;
- 8cJ. Wu, X. Wang, Q. Wang, Z. Lou, S. Li, Y. Zhu, L. Qin, H. Wei, Chem. Soc. Rev. 2019, 48, 1004–1076;
- 8dJ. Kobayashi, T. Okano, Bull. Chem. Soc. Jpn. 2019, 92, 817–824.
- 9
- 9aK. Sano, Y. Ishida, T. Aida, Angew. Chem. Int. Ed. 2018, 57, 2532–2543; Angew. Chem. 2018, 130, 2558–2570;
- 9bZ. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P. K. Wong, Adv. Mater. 2018, 30, 1706108;
- 9cY. Haketa, H. Maeda, Bull. Chem. Soc. Jpn. 2018, 91, 420–436;
- 9dF. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Nat. Nanotechnol. 2018, 13, 489–495.
- 10
- 10aJ.-R. Shen, Annu. Rev. Plant Biol. 2015, 66, 23–48;
- 10bT. Mirkovic, E. E. Ostroumov, J. M. Anna, R. van Grondelle, Govindjee, G. D. Scholes, Chem. Rev. 2017, 117, 249–293.
- 11
- 11aK. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charvet, S. Acharya, Sci. Technol. Adv. Mater. 2008, 9, 014109;
- 11bD. Zhang, T. K. Ronson, J. R. Nitschke, Acc. Chem. Res. 2018, 51, 2423–2436;
- 11cK. Ariga, M. Nishikawa, T. Mori, J. Takeya, L. K. Shrestha, J. P. Hill, Sci. Technol. Adv. Mater. 2019, 20, 51–95.
- 12
- 12aG.-B. Qi, Y.-J. Gao, L. Wang, H. Wang, Adv. Mater. 2018, 30, 1703444;
- 12bH. Asanuma, K. Murayama, Y. Kamiya, H. Kashida, Bull. Chem. Soc. Jpn. 2018, 91, 1739–1748;
- 12cJ. Yang, J. Li, Carbohydr. Polym. 2018, 181, 264–274.
- 13
- 13aY.-T. Liu, P. Zhang, N. Sun, B. Anasori, Q.-Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Adv. Mater. 2018, 30, 1707334;
- 13bT. Fujigaya, Bull. Chem. Soc. Jpn. 2019, 92, 400–408;
- 13cM. P. Pileni, Bull. Chem. Soc. Jpn. 2019, 92, 312–329;
- 13dM. Grzelczak, L. M. Liz-Marzan, R. Klajn, Chem. Soc. Rev. 2019, 48, 1342–1361.
- 14
- 14aE. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X. W. Lou, Energy Environ. Sci. 2018, 11, 872–880;
- 14bL. Zhou, K. Zhang, Z. Tao, L. Mai, Y.-M. Kang, S. L. Chou, J. Chen, Adv. Energy Mater. 2018, 8, 1701415.
- 15H. He, B. Xu, Bull. Chem. Soc. Jpn. 2018, 91, 900–906.
- 16
- 16aR. Chen, J. Kang, M. Kang, H. Lee, H. Lee, Bull. Chem. Soc. Jpn. 2018, 91, 979–990;
- 16bJ. Brijitta, P. Schurtenberger, Curr. Opin. Colloid Interface Sci. 2019, 40, 87–103;
- 16cK. W. Tan, U. Wiesner, Macromolecules 2019, 52, 395–409.
- 17
- 17aN. Pavliček, P. Gawel, D. R. Kohn, Z. Majzik, Y. Xiong, G. Meyer, H. L. Anderson, L. Gross, Nat. Chem. 2018, 10, 853–858;
- 17bK. Kaliyappan, Z. Chen, Nano Energy 2018, 48, 107–116.
- 18
- 18aW. Du, X. Wang, J. Zhan, X. Sun, L. Kang, F. Jiang, X. Zhang, Q. Shao, M. Dong, H. Liu, V. Murugadoss, Z. Guo, Electrochim. Acta 2019, 296, 907–915;
- 18bT. Nohara, T. Sawada, H. Tanaka, T. Serizawa, Bull. Chem. Soc. Jpn. 2019, 92, 982–988;
- 18cK. Akagi, Bull. Chem. Soc. Jpn. 2019, 92, 1509–1655.
- 19
- 19aJ. Pan, W. Chen, Y. Ma, G. Pan, Chem. Soc. Rev. 2018, 47, 5574–5587;
- 19bM. Komiyama, T. Mori, K. Ariga, Bull. Chem. Soc. Jpn. 2018, 91, 1075–1111.
- 20
- 20aM. Suda, Bull. Chem. Soc. Jpn. 2018, 91, 19–28;
- 20bR. Azmi, W. T. Hadmojo, S. Sinaga, C.-L. Lee, S. C. Yoon, J. H. Jung, S.-Y. Jang, Adv. Energy Mater. 2018, 8, 1701683;
- 20cT. Seki, Bull. Chem. Soc. Jpn. 2018, 91, 1026–1057.
- 21
- 21aK. Ariga, Y. Yamauchi, T. Mori, J. P. Hill, Adv. Mater. 2013, 25, 6477–6512;
- 21bK. Ariga, T. Mori, J. P. Hill, Langmuir 2013, 29, 8459–8471;
- 21cM. S. Kim, J.-H. Ryu, Deepika, Y. R. Lim, I. W. Nah, K. R. Lee, L. A. Archer, W. I. Cho, Nat. Energy 2018, 3, 889–898.
- 22
- 22aK. Ariga, Y. M. Lvov, K. Kawakami, Q. Ji, J. P. Hill, Adv. Drug Delivery Rev. 2011, 63, 762–771;
- 22bR. Guo, T. Jiao, R. Li, Y. Chen, W. Guo, L. Zhang, J. Zhou, Q. Zhang, Q. Peng, ACS Sustainable Chem. Eng. 2018, 6, 1279–1288;
- 22cK. Ariga, E. Ahn, M. Park, B.-S. Kim, Chem. Asian J. 2019, 14, 2553–2566.
- 23
- 23aM. Wang, L. He, W. Xu, X. Wang, Y. Yin, Angew. Chem. Int. Ed. 2015, 54, 7077–7081; Angew. Chem. 2015, 127, 7183–7187;
- 23bW. Li, M. Mueller, Annu. Rev. Chem. Biomol. Eng. 2015, 6, 187–216.
- 24
- 24aC.-Y. Chen, C.-M. Wang, W.-S. Liao, Bull. Chem. Soc. Jpn. 2019, 92, 600–607;
- 24bH. Agawa, T. Okamoto, T. Isobe, A. Nakajima, S. Matsushita, Bull. Chem. Soc. Jpn. 2018, 91, 405–409.
- 25
- 25aN. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2018, 3, 17068;
- 25bN. Liu, T. Liedl, Chem. Rev. 2018, 118, 3032–3053.
- 26
- 26aK. Ariga, Q. Ji, W. Nakanishi, J. P. Hill, M. Aono, Mater. Horiz. 2015, 2, 406–413;
- 26bK. Ariga, K. Minami, M. Ebara, J. Nakanishi, Polym. J. 2016, 48, 371–389.
- 27
- 27aK. Ariga, Q. Ji, J. P. Hill, Y. Bando, M. Aono, NPG Asia Mater. 2012, 4, e17;
- 27bK. Ariga, X. Jia, L. K. Shrestha, Mol. Syst. Des. Eng. 2019, 4, 49–64;
- 27cK. Ariga, M. Aono, Jpn. J. Appl. Phys. 2016, 55, 1102A6.
- 28
- 28aK. Ariga, M. V. Lee, T. Mori, X.-Y. Yu, J. P. Hill, Adv. Colloid Interface Sci. 2010, 154, 20–29;
- 28bK. Ariga, M. Li, G. J. Richards, J. P. Hill, J. Nanosci. Nanotechnol. 2011, 11, 1–13.
- 29
- 29aT. Govindaraju, M. B. Avinash, Nanoscale 2012, 4, 6102–6117;
- 29bK. Ariga, V. Malgras, Q. Ji, M. B. Zakaria, Y. Yamauchi, Coord. Chem. Rev. 2016, 320, 139–152;
- 29cY. Yamamoto, H. Imai, Y. Oaki, Bull. Chem. Soc. Jpn. 2019, 92, 779–784;
- 29dS. Maji, L. K. Shrestha, K. Ariga, J. Inorg. Organomet. Polym. Mater. 2020, 30, 42–55.
- 30
- 30aM. Ramanathan, L. K. Shrestha, T. Mori, Q. Ji, J. P. Hill, K. Ariga, Phys. Chem. Chem. Phys. 2013, 15, 10580–10611;
- 30bL. K. Shrestha, Q. Ji, T. Mori, K. Miyazawa, Y. Yamauchi, J. P. Hill, K. Ariga, Chem. Asian J. 2013, 8, 1662–1679;
- 30cK. Ariga, M. Matsumoto, T. Mori, L. K. Shrestha, Beilstein J. Nanotechnol. 2019, 10, 1559–1587;
- 30dA. Azhar, Y. Li, Z. Cai, M. B. Zakaria, M. K. Masud, M. S. A. Hossain, J. Kim, W. Zhang, J. Na, Y. Yamauchi, M. Hu, Bull. Chem. Soc. Jpn. 2019, 92, 875–904;
- 30eD. Kim, M. Gu, M. Park, T. Kim, B.-S. Kim, Mol. Syst. Des. Eng. 2019, 4, 65–77.
- 31
- 31aH. Abe, J. Liu, K. Ariga, Mater. Today 2016, 19, 12–18;
- 31bH. Wang, S. Yin, K. Eid, Y. Li, Y. Xu, X. Li, H. Xue, L. Wang, ACS Chem. Eng. 2018, 6, 11768–11774;
- 31cM. Komiyama, K. Ariga, Mol. Catal. 2019, 475, 110492;
- 31dL. Paul, B. Banerjee, A. Bhaumik, M. Ali, J. Nanosci. Nanotechnol. 2020, 20, 2858–2866.
- 32
- 32aS. Ishihara, J. Labuta, W. Van Rossom, D. Ishikawa, K. Minami, J. P. Hill, K. Ariga, Phys. Chem. Chem. Phys. 2014, 16, 9713–9746;
- 32bL. Zhang, T. Wang, Z. Shen, M. Liu, Adv. Mater. 2016, 28, 1044–1059;
- 32cM. Pandeeswar, S. P. Senanayak, T. Govindaraju, ACS Appl. Mater. Interfaces 2016, 8, 30362–30371;
- 32dJ. A. Jackman, N.-J. Cho, M. Nishikawa, G. Yoshikawa, T. Mori, L. K. Shrestha, K. Ariga, Chem. Asian J. 2018, 13, 3366–3377;
- 32eK. Ariga, T. Makita, M. Ito, T. Mori, S. Watanabe, J. Takeya, Beilstein J. Nanotechnol. 2019, 10, 2014–2030.
- 33
- 33aS. Hecht, Angew. Chem. Int. Ed. 2003, 42, 24–26; Angew. Chem. 2003, 115, 24–26;
- 33bY. J. Li, Y. Yan, Y. S. Zhao, J. Yao, Adv. Mater. 2016, 28, 1319–1326;
- 33cA. Nayak, S. Unayama, S. Tai, T. Tsuruoka, R. Waser, M. Aono, I. Valov, T. Hasegawa, Adv. Mater. 2018, 30, 1703261;
- 33dJ. M. Giussi, M. L. Cortez, W. A. Marmisolle, O. Azzaroni, Chem. Soc. Rev. 2019, 48, 814–849; K. Ariga, M. Ito, T. Mori, S. Watanabe, J. Takeya, Nano Today 2019, 28, 100762.
- 34
- 34aK. Ariga, S. Ishihara, H. Abe, M. Li, J. P. Hill, J. Mater. Chem. 2012, 22, 2369–2377;
- 34bC. M. Puscasu, G. Carja, C. Zaharia, Int. J. Mater. Prod. Technol. 2015, 51, 228–240;
- 34cY. J. Lee, Y. Park, J. Nanosci. Nanotechnol. 2020, 20, 2781–2790.
- 35
- 35aQ. Zou, K. Liu, M. Abbas, X. i. Yan, Adv. Mater. 2016, 28, 1031–1043;
- 35bJ. Kim, J. H. Kim, K. Ariga, Joule 2017, 1, 739–768;
- 35cC. Sengottaiyan, R. Jayavel, R. G. Shrestha, T. Subramani, S. Maji, J. H. Kim, J. P. Hill, K. Ariga, L. K. Shrestha, Bull. Chem. Soc. Jpn. 2019, 92, 521–528;
- 35dY. Guo, T. Park, J. W. Yi, J. Henzie, J. Kim, Z. Wang, B. Jiang, Y. Bando, Y. Sugahara, J. Tang, Y. Yamauchi, Adv. Mater. 2019, 31, 1807134;
- 35eH. Huang, M. Yan, C. Yang, H. He, Q. Jiang, L. Yang, Z. Lu, Z. Sun, X. Xu, Y. Bando, Y. Yamauchi, Adv. Mater. 2019, 31, 1903415.
- 36
- 36aK. Ariga, Q. Ji, M. J. McShane, Y. M. Lvov, A. Vinu, J. P. Hill, Chem. Mater. 2012, 24, 728–737;
- 36bW. Nakanishi, K. Minami, L. K. Shrestha, Q. Ji, J. P. Hill, K. Ariga, Nano Today 2014, 9, 378–394;
- 36cE. Stulz, Acc. Chem. Res. 2017, 50, 823–831;
- 36dK. Ariga, X. Jia, J. Song, C.-T. Hsieh, S.-h. Hsu, ChemNanoMat 2019, 5, 692–702;
- 36eE. Rozhina, I. Ishmukhametov, S. Batasheva, F. Akhatova, R. Fakhrullin, Beilstein J. Nanotechnol. 2019, 10, 1818–1825.
- 37
- 37aK. Ariga, Q. Ji, T. Mori, M. Naito, Y. Yamauchi, H. Abe, J. P. Hill, Chem. Soc. Rev. 2013, 42, 6322–6345;
- 37bK. Ariga, K. Kawakami, M. Ebara, Y. Kotsuchibashi, Q. Ji, J. P. Hill, New J. Chem. 2014, 38, 5149–5163;
- 37cS. Dutta, J. Kim, P.-H. Hsieh, Y.-S. Hsu, Y. V. Kaneti, F.-K. Shieh, Y. Yamauchi, K. C.-W. Wu, Small Methods 2019, 3, 1900213;
- 37dS. Banerjee, J. Pillai, Expert Opin. Drug Metab. Toxicol. 2019, 15, 499–515.
- 38
- 38aM. Aono, K. Ariga, Adv. Mater. 2016, 28, 989–992;
- 38bK. Ariga, Mater. Chem. Front. 2017, 1, 208–211.
- 39H. Wang, Z. Feng, B. Xu, Angew. Chem. Int. Ed. 2019, 58, 10423–10432; Angew. Chem. 2019, 131, 10532–10541.
- 40
- 40aM. Iizuka, Y. Nakagawa, Y. Moriya, E. Satou, A. Fujimori, Bull. Chem. Soc. Jpn. 2018, 91, 813–823;
- 40bK. Ariga, T. Mori, J. Li, Langmuir 2019, 35, 3585–3599.
- 41
- 41aG. Decher, Science 1997, 277, 1232–1237;
- 41bK. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K. C.-W. Wu, J. P. Hill, Chem. Lett. 2014, 43, 36–68;
- 41cJ. J. Richardson, M. Bjoernmalm, F. Caruso, Science 2015, 348, aaa2491.
- 42
- 42aM. Amit, S. Yuran, E. Gazit, M. Reches, N. Ashkenasy, Adv. Mater. 2018, 30, 1707083;
- 42bB. Roy, T. Govindaraju, Bull. Chem. Soc. Jpn. 2019, 92, 1883–1901.
- 43
- 43aJ. L. Bricks, Y. L. Slominskii, I. D. Panas, A. P. Demchenko, Methods Appl. Fluoresc. 2017, 6, 012001;
- 43bM. Irie, M. Morimoto, Bull. Chem. Soc. Jpn. 2018, 91, 237–250;
- 43cM. Gon, K. Tanaka, Y. Chujo, Bull. Chem. Soc. Jpn. 2019, 92, 7–18;
- 43dC. Zheng, C. Zhong, C. J. Collison, F. C. Spano, J. Phys. Chem. C 2019, 123, 3203–3215;
- 43eR. F. Tabor, T. M. McCoy, Y. Hu, B. L. Wilkinson, Bull. Chem. Soc. Jpn. 2018, 91, 932–939.
- 44S. Cherumukkil, B. Vedhanarayanan, G. Das, V. K. Praveen, A. Ajayaghosh, Bull. Chem. Soc. Jpn. 2018, 91, 100–120.
- 45T. Mori, H. Chin, K. Kawashima, H. Ngo, N.-J. Cho, W. Nakanishi, J. P. Hill, K. Ariga, ACS Nano 2019, 13, 2410–2419.
- 46S. Hiraoka, Bull. Chem. Soc. Jpn. 2018, 91, 957–978.
- 47T. Shimizu, Bull. Chem. Soc. Jpn. 2018, 91, 623–668.
- 48X. Liu, J. G. Riess, M. P. Krafft, Bull. Chem. Soc. Jpn. 2018, 91, 846–857.
- 49
- 49aY. Oishi, T. Kato, T. Narita, K. Ariga, T. Kunitake, Langmuir 2008, 24, 1682–1685;
- 49bT. Narita, K. Ariga, T. Kunitake, Y. Oishi, Langmuir 2019, 35, 10383–10389.
- 50S. Dhiman, S. J. George, Bull. Chem. Soc. Jpn. 2018, 91, 687–699.
- 51
- 51aP. Bairi, K. Minami, J. P. Hill, W. Nakanishi, L. K. Shrestha, C. Liu, K. Harano, E. Nakamura, K. Ariga, ACS Nano 2016, 10, 8796–8802;
- 51bL. K. Shrestha, T. Mori, K. Ariga, Curr. Opin. Colloid Interface Sci. 2018, 35, 68–80.
- 52
- 52aA. M. Garcia, D. Iglesias, E. Parisi, K. E. Styan, L. J. Waddington, C. Deganutti, R. De Zorzi, M. Grassi, M. Melchionna, A. V. Vargiu, S. Marchesan, Chem 2018, 4, 1862–1876;
- 52bK. Fukunaga, H. Tsutsumi, H. Mihara, Bull. Chem. Soc. Jpn. 2019, 92, 391–399.
- 53M. He, J. Li, S. Tan, R. Wang, Y. Zhang, J. Am. Chem. Soc. 2013, 135, 18718–18721.
- 54X. Tong, F. Yang, Adv. Mater. 2016, 28, 7257–7263.
- 55H. Izawa, K. Kawakami, M. Sumita, Y. Tateyama, J. P. Hill, K. Ariga, J. Mater. Chem. B 2013, 1, 2155–2161.
- 56S. Sur, J. B. Matson, M. J. Webber, C. J. Newcomb, S. I. Stupp, ACS Nano 2012, 6, 10776–10785.
- 57R. Freeman, M. Han, Z. Álvarez, J. A. Lewis, J. R. Wester, N. Stephanopoulos, M. T. McClendon, C. Lynsky, J. M. Godbe, H. Sangji, E. Luijten, S. I. Stupp, Science 2018, 362, 808–813.
- 58T. Jiang, O. A. Vail, Z. Jiang, X. Zuo, V. P. Conticello, J. Am. Chem. Soc. 2015, 137, 7793–7802.
- 59E. L. Magnotti, S. A. Hughes, R. S. Dillard, S. Wang, L. Hough, A. Karumbamkandathil, T. Lian, J. S. Wall, X. Zuo, E. R. Wright, V. P. Conticello, J. Am. Chem. Soc. 2016, 138, 16274–16282.
- 60A. D. Merg, G. Touponse, E. van Genderen, X. Zuo, A. Bazrafshan, T. Blum, S. Hughes, K. Salaita, J. P. Abrahams, V. P. Conticello, Angew. Chem. Int. Ed. 2019, 58, 13507–13512; Angew. Chem. 2019, 131, 13641–13646.
- 61S. A. Hughes, F. Wang, S. Wang, M. A. B. Kreutzberger, T. Osinski, A. Orlova, J. S. Wall, X. Zuo, E. H. Egelman, V. P. Conticello, Proc. Natl. Acad. Sci. USA 2019, 116, 14456–14464.
- 62L. Zhao, Q. Zou, X. Yan, Bull. Chem. Soc. Jpn. 2019, 92, 70–79.
- 63J. Song, R. Xing, T. Jiao, Q. Peng, C. Yuan, H. Möhwald, X. Yan, ACS Appl. Mater. Interfaces 2018, 10, 2368–2376.
- 64R. Xing, K. Liu, T. Jiao, N. Zhang, K. Ma, R. Zhang, Q. Zou, G. i. Ma, X. Yan, Adv. Mater. 2016, 28, 3669–3676.
- 65G. Shen, R. Xing, N. Zhang, C. Chen, G. Ma, X.i. Yan, ACS Nano 2016, 10, 5720–5729.
- 66Q. Zou, M. Abbas, L. Zhao, S. Li, G. Shen, X. Yan, J. Am. Chem. Soc. 2017, 139, 1921–1927.
- 67S. Li, Q. Zou, Y. Li, C. Yuan, R. Xing, X. Yan, J. Am. Chem. Soc. 2018, 140, 10794–10802.
- 68Y. Li, Q. Zou, C. Yuan, S. Li, R. i. Xing, X. Yan, Angew. Chem. Int. Ed. 2018, 57, 17084–17088; Angew. Chem. 2018, 130, 17330–17334.
- 69T. Sawada, T. Serizawa, Bull. Chem. Soc. Jpn. 2018, 91, 455–466.
- 70H. Wang, J. Shi, Z. Feng, R. Zhou, S. Wang, A. A. Rodal, B. Xu, Angew. Chem. Int. Ed. 2017, 56, 16297–16301; Angew. Chem. 2017, 129, 16515–16519.
- 71Z. Feng, H. Wang, R. Zhou, J. Li, B. Xu, J. Am. Chem. Soc. 2017, 139, 3950–3953.
- 72Z. Feng, H. Wang, X. Chen, B. Xu, J. Am. Chem. Soc. 2017, 139, 15377–15384.
- 73H. Wang, Z. Feng, B. Xu, J. Am. Chem. Soc. 2019, 141, 7271–7274.
- 74H. Wang, Z. Feng, B. Xu, Angew. Chem. Int. Ed. 2019, 58, 5567–5571; Angew. Chem. 2019, 131, 5623–5627.
- 75
- 75aK. Ariga, T. Kunitake, Acc. Chem. Res. 1998, 31, 371–378;
- 75bK. Ariga, H. Ito, J. P. Hill, H. Tsukube, Chem. Soc. Rev. 2012, 41, 5800–5835;
- 75cK. Ariga, Langmuir 2020, 36, 7158–7180;
- 75dK. Ariga, ChemNanoMat 2016, 2, 333–343.
- 76M. Onda, K. Yoshihara, H. Koyano, K. Ariga, T. Kunitake, J. Am. Chem. Soc. 1996, 118, 8524–8530.
- 77
- 77aK. Ariga, T. Mori, J. P. Hill, Adv. Mater. 2012, 24, 158–176;
- 77bK. Ariga, T. Mori, S. Ishihara, K. Kawakami, J. P. Hill, Chem. Mater. 2014, 26, 519–532;
- 77cK. Ariga, T. Mori, W. Nakanishi, J. P. Hill, Phys. Chem. Chem. Phys. 2017, 19, 23658–23676;
- 77dK. Ariga, M. Ishii, T. Mori, Curr. Opin. Colloid Interface Sci. 2019, 44, 1–13.
- 78
- 78aK. Ariga, Y. Terasaka, D. Sakai, H. Tsuji, J. Kikuchi, J. Am. Chem. Soc. 2000, 122, 7835–7836;
- 78bK. Ariga, T. Nakanishi, Y. Terasaka, H. Tsuji, D. Sakai, J. Kikuchi, Langmuir 2005, 21, 976–981.
- 79
- 79aD. Ishikawa, T. Mori, Y. Yonamine, W. Nakanishi, D. Cheung, J. P. Hill, K. Ariga, Angew. Chem. Int. Ed. 2015, 54, 8988–8991; Angew. Chem. 2015, 127, 9116–9119;
- 79bT. Mori, D. Ishikawa, Y. Yonamine, Y. Fujii, J. P. Hill, I. Ichinose, K. Ariga, W. Nakanishi, ChemPhysChem 2017, 18, 1470–1474.
- 80T. Mori, H. Komatsu, N. Sakamoto, K. Suzuki, J. P. Hill, M. Matsumoto, H. Sakai, K. Ariga, W. Nakanishi, Phys. Chem. Chem. Phys. 2018, 20, 3073–3078.
- 81W. Nakanishi, S. Saito, N. Sakamoto, A. Kashiwagi, S. Yamaguchi, H. Sakai, K. Ariga, Chem. Asian J. 2019, 14, 2869–2876.
- 82T. Michinobu, S. Shinoda, T. Nakanishi, J. P. Hill, K. Fujii, T. N. Player, H. Tsukube, K. Ariga, J. Am. Chem. Soc. 2006, 128, 14478–14479.
- 83T. Mori, K. Okamoto, H. Endo, J. P. Hill, S. Shinoda, M. Matsukura, H. Tsukube, Y. Suzuki, Y. Kanekiyo, K. Ariga, J. Am. Chem. Soc. 2010, 132, 12868–12870.
- 84
- 84aN. Yamada, K. Ariga, M. Naito, K. Matsubara, E. Koyama, J. Am. Chem. Soc. 1998, 120, 12192–12199;
- 84bK. Ariga, J. Kikuchi, M. Naito, E. Koyama, N. Yamada, Langmuir 2000, 16, 4929–4939.
- 85K. Sakakibara, P. Chithra, B. Das, T. Mori, M. Akada, J. Labuta, T. Tsuruoka, S. Maji, S. Furumi, L. K. Shrestha, J. P. Hill, S. Acharya, K. Ariga, A. Ajayaghosh, J. Am. Chem. Soc. 2014, 136, 8548–8551.
- 86
- 86aV. Krishnan, Y. Kasuya, Q. Ji, M. Sathish, L. K. Shrestha, S. Ishihara, K. Minami, H. Morita, T. Yamazaki, N. Hanagata, K. Miyazawa, S. Acharya, W. Nakanishi, J. P. Hill, K. Ariga, ACS Appl. Mater. Interfaces 2015, 7, 15667–15673;
- 86bP. Bairi, G. S. Kumar, S. Acharya, S. Maji, K. Ariga, L. K. Shrestha, J. Nanosci. Nanotechnol. 2020, 20, 2971–2978.
- 87T. Mori, H. Tanaka, A. Dalui, N. Mitoma, K. Suzuki, M. Matsumoto, N. Aggarwal, A. Patnaik, S. Acharya, L. K. Shrestha, H. Sakamoto, K. Itami, K. Ariga, Angew. Chem. Int. Ed. 2018, 57, 9679–9683; Angew. Chem. 2018, 130, 9827–9831.
- 88J. Lv, D. Ding, X. Yang, K. Hou, X. Miao, D. Wang, B. Kou, L. Huang, Z. Tang, Angew. Chem. Int. Ed. 2019, 58, 7783–7787; Angew. Chem. 2019, 131, 7865–7869.
- 89Y. Yonamine, K. Cervantes-Salguero, K. Minami, I. Kawamata, W. Nakanishi, J. P. Hill, S. Murata, K. Ariga, Phys. Chem. Chem. Phys. 2016, 18, 12576–12581.
- 90
- 90aY. Okahata, T. Tsuruta, K. Ijiro, K. Ariga, Langmuir 1988, 4, 1373–1375;
- 90bY. Okahata, T. Tsuruta, K. Ijiro, K. Ariga, Thin Solid Films 1989, 180, 65–72.
- 91F. Zhao, P. Wang, A. Ruff, V. Hartmann, S. Zacarias, I. A. C. Pereira, M. M. Nowaczyk, M. Rögner, F. Conzuelo, W. Schuhmann, Energy Environ. Sci. 2019, 12, 3133–3143.
- 92K. Minami, T. Mori, W. Nakanishi, N. Shigi, J. Nakanishi, J. P. Hill, M. Komiyama, K. Ariga, ACS Appl. Mater. Interfaces 2017, 9, 30553–30560.
- 93X. Jia, K. Minami, K. Uto, A. C. Chang, J. P. Hill, T. Ueki, J. Nakanishi, K. Ariga, Small 2019, 15, 1804640.
- 94X. Jia, K. Minami, K. Uto, A. C. Chang, J. P. Hill, J. Nakanishi, K. Ariga, Adv. Mater. 2020, 32, 1905942.
- 95
- 95aK. Ariga, J. P. Hill, Q. Ji, Phys. Chem. Chem. Phys. 2007, 9, 2319–2340;
- 95bG. Rydzek, Q. Ji, M. Li, P. Schaaf, J. P. Hill, F. Boulmedais, K. Ariga, Nano Today 2015, 10, 138–167;
- 95cV. C. Rodrigues, M. L. Moraes, J. C. Soares, A. C. Soares, R. Sanfelice, E. Deffune, O. N. Oliveira Jr, Bull. Chem. Soc. Jpn. 2018, 91, 891–896.
- 96M. Onda, Y. Lvov, K. Ariga, T. Kunitake, J. Ferment. Bioeng. 1996, 82, 502–506.
- 97
- 97aK. Katagiri, K. Ariga, J. Kikuchi, Chem. Lett. 1999, 28, 661–662;
- 97bK. Katagiri, M. Hashizume, K. Ariga, T. Terashima, J. Kikuch, Chem. Eur. J. 2007, 13, 5272–5281.
- 98
- 98aK. Katagiri, R. Hamasaki, K. Ariga, J. Kikuchi, Langmuir 2002, 18, 6709–6711;
- 98bK. Katagiri, R. Hamasaki, K. Ariga, J. Kikuchi, J. Am. Chem. Soc. 2002, 124, 7892–7893.
- 99Q. Ji, I. Honma, S.-M. Paek, M. Akada, J. P. Hill, A. Vinu, K. Ariga, Angew. Chem. Int. Ed. 2010, 49, 9737–9739; Angew. Chem. 2010, 122, 9931–9933.
- 100
- 100aK. Ariga, A. Vinu, Q. Ji, O. Ohmori, J. P. Hill, S. Acharya, J. Koike, S. Shiratori, Angew. Chem. Int. Ed. 2008, 47, 7254–7257; Angew. Chem. 2008, 120, 7364–7367;
- 100bQ. Ji, X. Qiao, X. Liu, H. Jia, J.-S. Yu, K. Ariga, Bull. Chem. Soc. Jpn. 2018, 91, 391–397.
- 101Q. Ji, S. B. Yoon, J. P. Hill, A. Vinu, J.-S. Yu, K. Ariga, J. Am. Chem. Soc. 2009, 131, 4220–4221.
- 102
- 102aQ. Ji, M. Miyahara, J. P. Hill, S. Acharya, A. Vinu, S. B. Yoon, J.-S. Yu, K. Sakamoto, K. Ariga, J. Am. Chem. Soc. 2008, 130, 2376–2377;
- 102bQ. Ji, S. Acharya, J. P. Hill, A. Vinu, S. B. Yoon, J.-S. Yu, K. Sakamoto, K. Ariga, Adv. Funct. Mater. 2009, 19, 1792–1799.
- 103R. Fang, H. Zhang, L. Yang, H. Wang, Y. Tian, X. Zhang, L. Jiang, J. Am. Chem. Soc. 2016, 138, 16372–16379.
- 104C. H. Kwon, Y. Ko, D. Shin, M. Kwon, J. Park, W. K. Bae, S. W. Lee, J. Cho, Nat. Commun. 2018, 9, 4479.
- 105W. Wang, Z. Wu, X. Lin, T. Si, Q. He, J. Am. Chem. Soc. 2019, 141, 6601–6608.
- 106X. Feng, Y. Jia, P. Cai, J. Fei, J. Li, ACS Nano 2016, 10, 556–561.
- 107Y. Xu, J. Fei, G. Li, T. Yuan, J. Li, ACS Nano 2017, 11, 10175–10183.
- 108Y. Li, J. Fei, G. Li, H. Xie, Y. Yang, J. Li, Y. Xu, B. Sun, J. Xia, X. Fu, J. Li, ACS Nano 2018, 12, 1455–1461.
- 109G. Li, J. Fei, Y. Xu, Y. Li, J. Li, Adv. Funct. Mater. 2018, 28, 1706557.
- 110Y. Jia, W. Dong, X. Feng, J. Li, J. Li, Nanoscale 2015, 7, 82–85.
- 111J. Li, Y. Jia, W. Dong, A. Wang, J. Li, Chem. Commun. 2015, 51, 13044–13046.
- 112J. Li, Y. Jia, W. Dong, X. Feng, J. Fei, J. Li, Nano Lett. 2014, 14, 6160–6164.
- 113J. Zhao, J. Fei, C. Du, W. Cui, H. Ma, J. Li, Chem. Commun. 2013, 49, 10733–10735.
- 114J. Zhao, J. Fei, L. Gao, W. Cui, Y. Yang, A. Wang, J. Li, Chem. Eur. J. 2013, 19, 4548–4555.
- 115
- 115aX. Chia, M. Pumera, Nat. Catal. 2018, 1, 909–921;
- 115bR. K. Ulaganathan, Y. H. Chang, D.-Y. Wang, S.-S. Li, Bull. Chem. Soc. Jpn. 2018, 91, 761–771;
- 115cK. Ariga, S. Watanabe, T. Mori, J. Takeya, NPG Asia Mater. 2018, 10, 90–106;
- 115dK. Maeda, T. E. Mallouk, Bull. Chem. Soc. Jpn. 2019, 92, 38–54;
- 115eM. P. Browne, Z. Sofer, M. Pumera, Energy Environ. Sci. 2019, 12, 41–58;
- 115fC. N. R. Rao, K. Pramoda, Bull. Chem. Soc. Jpn. 2019, 92, 441–468.
- 116
- 116aX. Chia, M. Pumera, Chem. Soc. Rev. 2018, 47, 5602–5613;
- 116bF. Haque, T. Daeneke, K. Kalantar-zadeh, J. Z. Ou, Nano-Micro Lett. 2018, 10, 23.
- 117X. Ding, F. Peng, J. Zhou, W. Gong, G. Slaven, K. P. Loh, C. T. Lim, D. T. Leong, Nat. Commun. 2019, 10, 41.
- 118
- 118aL. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, Adv. Mater. 2018, 30, 1800191;
- 118bC. M. Lee, C. H. Jin, C. H. Ahn, H. K. Cho, J. H. Lim, S. M. Hwang, J. Joo, Bull. Chem. Soc. Jpn. 2019, 92, 1094–1099.
- 119B. L. Li, J. Wang, Z. F. Gao, H. Shi, H. L. Zou, K. Ariga, D. T. Leong, Mater. Horiz. 2019, 6, 563–570.
- 120
- 120aM. I. Setyawati, C. Y. Tay, S. L. Chia, S. L. Goh, W. Fang, M. J. Neo, H. C. Chong, S. M. Tan, S. C. Loo, K. W. Ng, J. P. Xie, C. N. Ong, N. S. Tan, D. T. Leong, Nat. Commun. 2013, 4, 1673;
- 120bF. Peng, M. I. Setyawati, J. K. Tee, X. Ding, J. Wang, M. E. Nga, H. K. Ho, D. T. Leong, Nat. Nanotechnol. 2019, 14, 279–286.
- 121
- 121aM. I. Setyawati, C. Y. Tay, D. Docter, R. H. Stauber, D. T. Leong, Chem. Soc. Rev. 2015, 44, 8174–8199;
- 121bJ. K. Tee, L. X. Yip, E. S. Tan, S. Santitewagun, A. Prasath, P. C. Ke, H. K. Ho, D. T. Leong, Chem. Soc. Rev. 2019, 48, 5381–5407.
- 122
- 122aM. I. Setyawati, V. M. Mochalin, D. T. Leong, ACS Nano 2016, 10, 1170–1181;
- 122bF. Peng, J. K. Tee, M. I. Setyawati, X. Ding, H. L. A. Yeo, Y. L. Tan, D. T. Leong, ACS Appl. Mater. Interfaces 2018, 10, 31938–31946.
- 123J. Wang, L. Zhang, F. Peng, X. Shi, D. T. Leong, Chem. Mater. 2018, 30, 3759–3767.
- 124M. I. Setyawati, C. Y. Tay, B. H. Bay, D. T. Leong, ACS Nano 2017, 11, 5020–5030.
- 125C. Y. Tay, M. I. Setyawati, D. T. Leong, ACS Nano 2017, 11, 2764–2772.
- 126
- 126aB. L. Li, J. P. Wang, H. L. Zou, S. Garaj, C. T. Lim, J. P. Xie, N. B. Li, D. T. Leong, Adv. Funct. Mater. 2016, 26, 7034–7056;
- 126bB. L. Li, M. I. Setyawati, H. L. Zou, J. X. Dong, H. Q. Luo, N. B. Li, D. T. Leong, Small 2017, 13, 1700527;
- 126cK. Ariga, D. T. Leong, T. Mori, Adv. Funct. Mater. 2018, 28, 1702905;
- 126dB. L. Li, R. Li, H. L. Zou, K. Ariga, N. B. Li, D. T. Leong, Mater. Horiz. 2020, 7, 455–469.
- 127B. L. Li, M. I. Setyawati, L. Chen, J. Xie, K. Ariga, C. T. Lim, S. Garaj, D. T. Leong, ACS Appl. Mater. Interfaces 2017, 9, 15286–15296.
- 128
- 128aK. Ariga, J. Li, J. Fei, Q. Ji, J. P. Hill, Adv. Mater. 2016, 28, 1251–1286;
- 128bK. Ariga, T. Mori, L. K. Shrestha, Chem. Rec. 2018, 18, 676–695.
- 129
- 129aT. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, M. Aono, Nat. Mater. 2011, 10, 591–595;
- 129bA. Nayak, T. Ohno, T. Tsuruoka, K. Terabe, T. Hasegawa, J. K. Gimzewski, M. Aono, Adv. Funct. Mater. 2012, 22, 3606–3613.
- 130S. A. Konnova, A. A. Danilushkina, G. I. Fakhrullina, F. S. Akhatova, A. R. Badrutdinov, R. F. Fakhrullin, RSC Adv. 2015, 5, 13530–13537.
- 131S. A. Konnova, I. R. Sharipova, T. A. Demina, Y. N. Osin, D. R. Yarullina, O. N. Ilinskaya, Y. M. Lvov, R. F. Fakhrullin, Chem. Commun. 2013, 49, 4208–4210.
- 132
- 132aS. A. Konnova, Y. M. Lvov, R. F. Fakhrullin, Langmuir 2016, 32, 12552–12558;
- 132bH. Lee, D. Hong, H. Cho, J. Y. Kim, J. H. Park, S. H. Lee, H. M. Kim, R. F. Fakhrullin, I. S. Choi, Sci. Rep. 2016, 6, 38517.
- 133
- 133aR. Merindol, A. Walther, Chem. Soc. Rev. 2017, 46, 5588–5619;
- 133bS. A. P. van Rossum, M. Tena-Solsona, J. H. van Esch, R. Eelkema, J. Boekhoven, Chem. Soc. Rev. 2017, 46, 5519–5535;
- 133cB. Rieß, J. Boekhoven, ChemNanoMat 2018, 4, 710–719;
- 133dM. Tena-Solsona, J. Boekhoven, Isr. J. Chem. 2019, 59, 898–905;
- 133eA. Sorrenti, J. Leira-Iglesias, A. J. Markvoort, T. F. A. de Greef, T. M. Hermans, Chem. Soc. Rev. 2017, 46, 5476–5680;
- 133fF. Lancia, A. Ryabchun, N. Katsonis, Nat. Rev. Chem. 2019, 3, 536–551;
- 133gH. Che, J. C. M. van Hest, ChemNanoMat 2019, 5, 1092–1109.
- 134
- 134aA. Mishra, D. B. Korlepara, M. Kumar, A. Jain, N. Jonnalagadda, K. K. Bejagam, S. Balasubramanian, S. J. George, Nat. Commun. 2018, 9, 1295;
- 134bA. Jain, S. Dhiman, A. Dhayani, P. K. Vemula, S. J. George, Nat. Commun. 2019, 10, 450.
- 135
- 135aA. Mal, R. K. Mishra, V. K. Praveen, M. A. Khayum, R. Banerjee, A. Ajayaghosh, Angew. Chem. Int. Ed. 2018, 57, 8443–8447; Angew. Chem. 2018, 130, 8579–8583;
- 135bA. Mal, S. Vijayakumar, R. K. Mishra, J. Jacob, R. S. Pillai, B. S. D. Kumar, A. Ajayaghosh, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.201912363; Angew. Chem. 2020, https://doi.org/10.1002/ange.201912363.