“Self-Lockable” Liquid Crystalline Diels–Alder Dynamic Network Actuators with Room Temperature Programmability and Solution Reprocessability
Zhi-Chao Jiang
Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
Search for more papers by this authorYao-Yu Xiao
Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
Search for more papers by this authorLu Yin
Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
Search for more papers by this authorLi Han
Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Yue Zhao
Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
Search for more papers by this authorZhi-Chao Jiang
Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
Search for more papers by this authorYao-Yu Xiao
Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
Search for more papers by this authorLu Yin
Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
Search for more papers by this authorLi Han
Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Yue Zhao
Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
Search for more papers by this authorGraphical Abstract
Liquid crystalline dynamic networks can be shaped into 3D objects at room temperature while being stabilized by slowly formed Diels–Alder-bonded (DA) cross-links. The actuators demonstrate thermally or optically induced reversible shape change for the purpose of performing mechanical work or locomotion.
Abstract
Novel main-chain liquid crystalline Diels—Alder dynamic networks (LCDANs) were prepared that exhibit unprecedented ease for actuator programming and reprocessing compared to existing liquid crystalline network (LCN) systems. Following cooling from 125 °C, LCDANs are deformed with aligned mesogens self-locked at room temperature by slowly formed Diels–Alder (DA) bonds, which allows for the formation of solid 3D actuators capable of reversible shape change, and strip walker and wheel-capable light-driven locomotion upon either thermally or optically induced order–disorder phase transition. Any actuator can readily be erased at 125 °C and reprogrammed into a new one under ambient conditions. Moreover, LCDANs can be processed directly from melt (for example, fiber drawing) and from solution (for example, casting tubular actuators), which cannot be achieved with LCNs using exchangeable covalent bonds. The combined attributes of LCDANs offer significant progress toward developing easily programmable/processable LCN actuators.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202000181-sup-0001-misc_information.pdf2.6 MB | Supplementary |
anie202000181-sup-0001-Movie_S1.mp413 MB | Supplementary |
anie202000181-sup-0001-Movie_S2.mp443.1 MB | Supplementary |
anie202000181-sup-0001-Movie_S3.mp465 MB | Supplementary |
anie202000181-sup-0001-Movie_S4.mp426.9 MB | Supplementary |
anie202000181-sup-0001-Movie_S5.mp459.9 MB | Supplementary |
anie202000181-sup-0001-Movie_S6.mp460.5 MB | Supplementary |
anie202000181-sup-0001-Movie_S7.mp415.8 MB | Supplementary |
anie202000181-sup-0001-Movie_S8.mp48.3 MB | Supplementary |
anie202000181-sup-0001-Movie_S9.mp44.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Zeng, P. Wasylczyk, D. S. Wiersma, A. Priimagi, Adv. Mater. 2018, 30, 1703554;
- 1bY. Y. Xiao, Z. C. Jiang, X. Tong, Y. Zhao, Adv. Mater. 2019, 31, 1903452;
- 1cS. Ma, X. Li, S. Huang, J. Hu, H. Yu, Angew. Chem. Int. Ed. 2019, 58, 2655–2659; Angew. Chem. 2019, 131, 2681–2685.
- 2
- 2aJ. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, Y. Yu, Nature 2016, 537, 179–184;
- 2bB. Xu, C. Zhu, L. Qin, J. Wei, Y. Yu, Small 2019, 15, 1901847.
- 3
- 3aS. M. Mirvakili, I. W. Hunter, Adv. Mater. 2018, 30, 1704407;
- 3bA. H. Gelebart, D. J. Mulder, M. Varga, A. Konya, G. Vantomme, E. Meijer, R. L. Selinger, D. J. Broer, Nature 2017, 546, 632–636.
- 4
- 4aR. Tang, Z. Liu, D. Xu, J. Liu, L. Yu, H. Yu, ACS Appl. Mater. Interfaces 2015, 7, 8393–8397;
- 4bW. Wei, Z. Zhang, J. Wei, X. Li, J. Guo, Adv. Opt. Mater. 2018, 6, 1800131;
- 4cY. Xiong, L. Zhang, P. Weis, P. Naumov, S. Wu, J. Mater. Chem. A 2018, 6, 3361–3366.
- 5
- 5aT. J. White, D. J. Broer, Nat. Mater. 2015, 14, 1087–1098;
- 5bY. Yu, T. Ikeda, Angew. Chem. Int. Ed. 2006, 45, 5416–5418; Angew. Chem. 2006, 118, 5542–5544;
- 5cM. Lahikainen, H. Zeng, A. Priimagi, Nat. Commun. 2018, 9, 4148;
- 5dT. Ube, K. Kawasaki, T. Ikeda, Adv. Mater. 2016, 28, 8212–8217.
- 6
- 6aZ. C. Jiang, Y. Y. Xiao, Y. Zhao, Adv. Opt. Mater. 2019, 7, 1900262;
- 6bR. S. Kularatne, H. Kim, J. M. Boothby, T. H. Ware, J. Polym. Sci. Part B 2017, 55, 395–411.
- 7
- 7aH.-F. Lu, M. Wang, X.-M. Chen, B.-P. Lin, H. Yang, J. Am. Chem. Soc. 2019, 141, 14364–14369;
- 7bB. Zuo, M. Wang, B. Lin, H. Yang, Nat. Commun. 2019, 10, 4539;
- 7cM. J. Ford, C. P. Ambulo, T. A. Kent, E. J. Markvicka, C. Pan, J. Malen, T. H. Ware, C. Majidi, Proc. Natl. Acad. Sci. USA 2019, 116, 21438–21444;
- 7dR. C. P. Verpaalen, M. G. Debije, C. W. M. Bastiaansen, H. Halilovi, T. A. P. Engels, A. P. H. J. Schenning, J. Mater. Chem. A 2018, 6, 17724–17729;
- 7eB. Ni, H. Chen, M. Zhang, P. Keller, M. Tatoulian, M. H. Li, Mater. Chem. Front. 2019, 3, 2499–2506.
- 8
- 8aY. Xia, X. Zhang, S. Yang, Angew. Chem. Int. Ed. 2018, 57, 5665–5668; Angew. Chem. 2018, 130, 5767–5770;
- 8bZ. C. Jiang, Y. Y. Xiao, X. Tong, Y. Zhao, Angew. Chem. Int. Ed. 2019, 58, 5332–5337; Angew. Chem. 2019, 131, 5386–5391;
- 8cO. M. Wani, R. Verpaalen, H. Zeng, A. Priimagi, A. P. H. J. Schenning, Adv. Mater. 2019, 31, 1805985;
- 8dA. H. Gelebart, D. J. Mulder, G. Vantomme, A. P. H. J. Schenning, D. J. Broer, Angew. Chem. Int. Ed. 2017, 56, 13436–13439; Angew. Chem. 2017, 129, 13621–13624.
- 9
- 9aZ. Pei, Y. Yang, Q. Chen, E. M. Terentjev, Y. Wei, Y. Ji, Nat. Mater. 2014, 13, 36–41;
- 9bY. Yang, E. M. Terentjev, Y. Zhang, Q. Chen, Y. Zhao, Y. Wei, Y. Ji, Angew. Chem. Int. Ed. 2019, 58, 17474–17479; Angew. Chem. 2019, 131, 17635–17640.
- 10Z. Wen, M. K. McBride, X. Zhang, X. Han, A. M. Martinez, R. Shao, C. Zhu, R. Visvanathan, N. A. Clark, Y. Wang, Macromolecules 2018, 51, 5812–5819.
- 11M. O. Saed, A. Gablier, E. M. Terentejv, Adv. Funct. Mater. 2019, 29, 1906458.
- 12
- 12aZ. Wang, H. Tian, Q. He, S. Cai, ACS Appl. Mater. Interfaces 2017, 9, 33119–33128;
- 12bM. K. McBride, A. M. Martinez, L. Cox, M. Alim, K. Childress, M. Beiswinger, M. Podgorski, B. T. Worrel, J. Killgore, C. N. Bowman, Sci. Adv. 2018, 4, eaat 4634.
- 13M. K. McBride, M. Hendrikx, D. Liu, B. T. Worrell, D. J. Broer, C. N. Bowman, Adv. Mater. 2017, 29, 1606509.
- 14
- 14aG. Zhang, Q. Zhao, L. Yang, W. Zou, X. Xi, T. Xie, ACS Macro Lett. 2016, 5, 805–808;
- 14bW. Gao, M. Bie, Y. Quan, J. Zhu, W. Zhang, Polymer 2018, 151, 27–33.
- 15
- 15aJ. Bai, H. Li, Z. Shi, J. Yin, Macromolecules 2015, 48, 3539–3546;
- 15bL. Polgar, M. Van Duin, A. Broekhuis, F. Picchioni, Macromolecules 2015, 48, 7096–7105;
- 15cP. Berto, A. Pointet, C. Le Coz, S. Grelier, F. Peruch, Macromolecules 2018, 51, 651–659.
- 16X. Liu, P. Du, L. Liu, Z. Zheng, X. Wang, T. Joncheray, Y. Zhang, Polym. Bull. 2013, 70, 2319–2335.
- 17M. Li, R. Zhang, X. Li, Q. Wu, T. Chen, P. Sun, Polymer 2018, 148, 127–137.
- 18S. Yu, R. Zhang, Q. Wu, T. Chen, P. Sun, Adv. Mater. 2013, 25, 4912–4917.
- 19
- 19aX. Lu, G. Fei, H. Xia, Y. Zhao, J. Mater. Chem. A 2014, 2, 16051–16060;
- 19bF. Y. C. Boey, X. L. Song, S. K. Rath, C. Y. Yue, J. Appl. Polym. Sci. 2002, 85, 227–235.