Metal–Organic Frameworks as Metal Ion Precursors for the Synthesis of Nanocomposites for Lithium-Ion Batteries
Hongfeng Li
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorPeng Wu
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorYawen Xiao
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorMeng Shao
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorYu Shen
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorYun Fan
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorHuanhuan Chen
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorRuijie Xie
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorWenlei Zhang
College of Science, Northeastern University, Shenyang, 100819 China
Search for more papers by this authorProf. Sheng Li
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorProf. Jiansheng Wu
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorProf. Yu Fu
College of Science, Northeastern University, Shenyang, 100819 China
Search for more papers by this authorCorresponding Author
Prof. Bing Zheng
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorCorresponding Author
Prof. Weina Zhang
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorCorresponding Author
Prof. Fengwei Huo
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorHongfeng Li
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorPeng Wu
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorYawen Xiao
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorMeng Shao
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorYu Shen
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorYun Fan
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorHuanhuan Chen
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorRuijie Xie
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorWenlei Zhang
College of Science, Northeastern University, Shenyang, 100819 China
Search for more papers by this authorProf. Sheng Li
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorProf. Jiansheng Wu
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorProf. Yu Fu
College of Science, Northeastern University, Shenyang, 100819 China
Search for more papers by this authorCorresponding Author
Prof. Bing Zheng
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorCorresponding Author
Prof. Weina Zhang
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorCorresponding Author
Prof. Fengwei Huo
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800 China
Search for more papers by this authorGraphical Abstract
Benefits of instability: MOFs are used as metal ion precursors for the synthesis of nanocomposites by exploiting the instability of MOFs. The reaction occurs simply by mixing the MOFs, substrates, and other reactants (such as TAA and nickel nitrate). Through a heterogeneous growth process, nanomaterials with uniform structures can be formed on different substrates.
Abstract
Metal–organic frameworks (MOFs) are promising materials with fascinating properties. Their widespread applications are sometimes hindered by the intrinsic instability of frameworks. However, this instability of MOFs can also be exploited for useful purposes. Herein, we report the use of MOFs as metal ion precursors for constructing functional nanocomposites by utilizing the instability of MOFs. The heterogeneous growth process of nanostructures on substrates involves the release of metal ions, nucleation on substrates, and formation of a covering structure. Specifically, the synthesized CoS with carbon nanotubes as substrates display enhanced performance in a lithium-ion battery. Such strategy not only presents a new way for exploiting the instability of MOFs but also supplies a prospect for designing versatile functional nanocomposites.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201915279-sup-0001-misc_information.pdf2.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. R. Long, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1213–1214.
- 2H.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673–674.
- 3H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 974–986.
- 4J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869–932.
- 5L. J. Murray, M. Dinca, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294–1314.
- 6L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105–1125.
- 7X. Si, C. Jiao, F. Li, J. Zhang, S. Wang, S. Liu, Z. Li, L. Sun, F. Xu, Z. Gabelica, C. Schick, Energy Environ. Sci. 2011, 4, 4522–4527.
- 8G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, F. Huo, Nat. Chem. 2012, 4, 310–316.
- 9C. Wang, B. An, W. Lin, ACS Catal. 2019, 9, 130–146.
- 10A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. Hupp, O. K. Farha, Nat. Rev. Mater. 2016, 1, 15018.
- 11S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.-C. Zhou, Adv. Mater. 2018, 30, 1704303.
- 12N. Li, J. Xu, R. Feng, T.-L. Hu, X.-H. Bu, Chem. Commun. 2016, 52, 8501–8513.
- 13D. Feng, K. Wang, Z. Wei, Y.-P. Chen, C. M. Simon, R. K. Arvapally, R. L. Martin, M. Bosch, T.-F. Liu, S. Fordham, D. Yuan, M. A. Omary, M. Haranczyk, B. Smit, H.-C. Zhou, Nat. Commun. 2014, 5, 5723.
- 14W. Zhang, Y. Hu, J. Ge, H.-L. Jiang, S.-H. Yu, J. Am. Chem. Soc. 2014, 136, 16978–16981.
- 15J. Guan, Y. Hu, Y. Wang, H. Li, Z. Xu, T. Zhang, P. Wu, S. Zhang, G. Xiao, W. Ji, L. Li, M. Zhang, Y. Fan, L. Li, B. Zheng, W. Zhang, W. Huang, F. Huo, Adv. Mater. 2017, 29, 1606290.
- 16X. Cao, C. Tan, M. Sindoro, H. Zhang, Chem. Soc. Rev. 2017, 46, 2660–2677.
- 17P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Nat. Chem. 2016, 8, 718–724.
- 18X. F. Lu, B. Y. Xia, S.-Q. Zang, X. W. D. Lou, Angew. Chem. Int. Ed. 2019, https://doi.org/10.1002/anie.201910309; Angew. Chem. 2019, https://doi.org/10.1002/ange.201910309.
- 19H. B. Wu, X. W. Lou, Sci. Adv. 2017, 3, eaap 9252.
- 20K. Cho, S.-H. Han, M. P. Suh, Angew. Chem. Int. Ed. 2016, 55, 15301–15305; Angew. Chem. 2016, 128, 15527–15531.
- 21P. Zhang, B. Y. Guan, L. Yu, X. W. Lou, Angew. Chem. Int. Ed. 2017, 56, 7141–7145; Angew. Chem. 2017, 129, 7247–7251.
- 22P. Wang, Y.-J. Zhang, J. Qin, Y. Chen, Y. Zhao, J. Mol. Struct. 2015, 1083, 95–100.
- 23L. Han, S. Dong, E. Wang, Adv. Mater. 2016, 28, 9266–9291.
- 24B. Y. Guan, X. Y. Yu, H. B. Wu, X. W. Lou, Adv. Mater. 2017, 29, 1703614.
- 25S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C.-Y. Chiang, W. Zhou, J. Zhao, J. Qiu, Adv. Mater. 2017, 29, 1700874.
- 26S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue, H. Pang, Adv. Energy Mater. 2017, 7, 1602733.
- 27S. Kuyuldar, D. T. Genna, C. Burda, J. Mater. Chem. A 2019, 7, 21545–21576.
- 28Y. V. Kaneti, J. Tang, R. R. Salunkhe, X. Jiang, A. Yu, K. C. W. Wu, Y. Yamauchi, Adv. Mater. 2017, 29, 1604898.
- 29Q. Lu, M. Zhao, J. Chen, B. Chen, C. Tan, X. Zhang, Y. Huang, J. Yang, F. Cao, Y. Yu, J. Ping, Z. Zhang, X.-J. Wu, H. Zhang, Small 2016, 12, 4669–4674.
- 30J. Zhang, H. Hu, Z. Li, X. W. Lou, Angew. Chem. Int. Ed. 2016, 55, 3982–3986; Angew. Chem. 2016, 128, 4050–4054.
- 31D. Yoo, M. Kim, S. Jeong, J. Han, J. Cheon, J. Am. Chem. Soc. 2014, 136, 14670–14673.
- 32T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. Llabres i Xamena, J. Gascon, Nat. Mater. 2015, 14, 48–55.
- 33M. A. Rahim, M. Bjoernmalm, N. Bertleff-Zieschang, Q. Besford, S. Mettu, T. Suma, M. Faria, F. Caruso, Adv. Mater. 2017, 29, 1606717.
- 34D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 2006, 106, 1105–1136.
- 35X. Miao, K. Pan, G. Wang, Y. Liao, L. Wang, W. Zhou, B. Jiang, Q. Pan, G. Tian, Chem. Eur. J. 2014, 20, 474–482.
- 36P. Ganesan, M. Prabu, J. Sanetuntikul, S. Shanmugam, ACS Catal. 2015, 5, 3625–3637.
- 37Z.-Q. Liu, H. Cheng, N. Li, T. Y. Ma, Y.-Z. Su, Adv. Mater. 2016, 28, 3777–3784.
- 38M. Shao, Y. Cheng, T. Zhang, S. Li, W. Zhang, B. Zheng, J. Wu, W.-W. Xiong, F. Huo, J. Lu, ACS Appl. Mater. Interfaces 2018, 10, 33097–33104.
- 39X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao, W. Hu, Nano Energy 2017, 31, 541–550.
- 40J.-Y. Lin, S.-Y. Tai, S.-W. Chou, J. Phys. Chem. C 2014, 118, 823–830.
- 41Z. Shadike, M.-H. Cao, F. Ding, L. Sang, Z.-W. Fu, Chem. Commun. 2015, 51, 10486–10489.
- 42E. Aslan, I. Akin, I. H. Patir, Chem. Eur. J. 2016, 22, 5342–5349.
- 43Y. Wang, J. He, C. Liu, W. H. Chong, H. Chen, Angew. Chem. Int. Ed. 2015, 54, 2022–2051; Angew. Chem. 2015, 127, 2046–2079.
- 44S. H. Choi, Y. C. Kang, Small 2014, 10, 474–478.
- 45X.-Y. Yu, L. Yu, X. W. Lou, Adv. Energy Mater. 2016, 6, 1501333.
- 46H. Li, Y. Su, W. Sun, Y. Wang, Adv. Funct. Mater. 2016, 26, 8345–8353.
- 47H. Wang, J. Ma, S. Liu, L. Nie, Y. Chai, X. Yang, R. Yuan, J. Alloys Compd. 2016, 676, 551–556.
- 48B. He, W.-C. Li, C. Yang, S.-Q. Wang, A.-H. Lu, ACS Nano 2016, 10, 1633–1639.