Li[LiCs2Cl][Ga3S6]: A Nanoporous Framework of GaS4 Tetrahedra with Excellent Nonlinear Optical Performance
Dr. Bin-Wen Liu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155#, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Xiao-Ming Jiang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155#, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorBing-Xuan Li
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155#, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorHui-Yi Zeng
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155#, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Guo-Cong Guo
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155#, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorDr. Bin-Wen Liu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155#, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Xiao-Ming Jiang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155#, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorBing-Xuan Li
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155#, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorHui-Yi Zeng
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155#, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Guo-Cong Guo
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155#, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorDedicated to Professor Jin-Shun Huang on the occasion of his 80th birthday
Graphical Abstract
The salt-inclusion chalcogenide Li[LiCs2Cl][Ga3S6] is presented, which features a 3D framework composed of [Ga3S6] nanosized tunnels. Introduction of an ionic guest to the covalent chalcogenide host produces a material with a moderate nonlinear optical (NLO) coefficient and an ultrawide band gap (Eg). These characteristics are promising for the development of infrared (IR) NLO materials.
Abstract
A large nonlinear optical (NLO) coefficient and a wide band gap are two crucial but contradictory parameters that are difficult to achieve simultaneously in a single infrared (IR) NLO compound. A salt-inclusion chalcogenide (SIC), Li[LiCs2Cl][Ga3S6] (1), was prepared that presents a nanosized tunnel framework constructed from monotype chalcogenide tetrahedra. Highly oriented covalent GaS4 tetrahedra in the host lead to a moderate second harmonic generation response (0.7 AgGaS2), and ionic guests effectively broaden the band gap to the widest value (4.18 eV) among all IR NLO chalcogenides, thereby achieving a remarkable balance between NLO efficiency and band gap.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201912416-sup-0001-misc_information.pdf873.8 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX.-M. Jiang, S.-P. Guo, H.-Y. Zeng, M.-J. Zhang, G.-C. Guo in Structure-Property Relationships in Non-Linear Optical Crystals II, Springer, Heidelberg, 2012, pp. 1–43;
10.1007/430_2011_72 Google Scholar
- 1bF. Liang, L. Kang, Z. Lin, Y. Wu, Cryst. Growth Des. 2017, 17, 2254–2289;
- 1cK. Wu, S. Pan, Coord. Chem. Rev. 2018, 377, 191–208;
- 1dK. E. Woo, J. Wang, K. Wu, K. Lee, J.-A. Dolyniuk, S. Pan, K. Kovnir, Adv. Funct. Mater. 2018, 28, 1801589;
- 1eT. Yu, S. Wang, X. Zhang, C. Li, J. Qiao, N. Jia, B. Han, S.-Q. Xia, X. Tao, Chem. Mater. 2019, 31, 2010–2018;
- 1fS.-P. Guo, Y. Chi, H.-G. Xue, Angew. Chem. Int. Ed. 2018, 57, 11540–11543; Angew. Chem. 2018, 130, 11714–11717.
- 2
- 2aA. O. Okorogu, S. B. Mirov, A. Y. Dergachev, W. Lee, D. I. Crouthamel, K. L. Vodopyanov, N. Jenkins, V. V. Badikov, Opt. Commun. 1998, 155, 307–312;
- 2bB. N. Carnio, K. T. Zawilski, P. G. Schunemann, A. Y. Elezzabi, Opt. Lett. 2019, 44, 2867;
- 2cV. Petrov, F. Rotermund, F. Noack, Opt. Lett. 1999, 24, 414–416.
- 3L. Kang, M. Zhou, J. Yao, Z. Lin, Y. Wu, C. Chen, J. Am. Chem. Soc. 2015, 137, 13049–13059.
- 4
- 4aT. K. Bera, J. I. Jang, J. B. Ketterson, M. G. Kanatzidis, J. Am. Chem. Soc. 2009, 131, 75–77;
- 4bG. Zou, H. Jo, S.-J. Lim, T.-S. You, K. M. Ok, Angew. Chem. Int. Ed. 2018, 57, 8619–8622; Angew. Chem. 2018, 130, 8755–8758.
- 5
- 5aM. C. Chen, L. M. Wu, H. Lin, L. J. Zhou, L. Chen, J. Am. Chem. Soc. 2012, 134, 6058–6060;
- 5bJ. Chen, C. L. Hu, F. F. Mao, B. P. Yang, X. H. Zhang, J. G. Mao, Angew. Chem. Int. Ed. 2019, 58, 11666–11669; Angew. Chem. 2019, 131, 11792–11795.
- 6
- 6aH. Li, G. Li, K. Wu, B. Zhang, Z. Yang, S. Pan, Chem. Mater. 2018, 30, 7428–7432;
- 6bC. Li, W. Yin, P. Gong, X. Li, M. Zhou, A. Mar, Z. Lin, J. Yao, Y. Wu, C. Chen, J. Am. Chem. Soc. 2016, 138, 6135–6138;
- 6cG. Shi, Y. Wang, F. Zhang, B. Zhang, Z. Yang, X. Hou, S. Pan, K. R. Poeppelmeier, J. Am. Chem. Soc. 2017, 139, 10645–10648;
- 6dM. Mutailipu, M. Zhang, B. Zhang, L. Wang, Z. Yang, X. Zhou, S. Pan, Angew. Chem. Int. Ed. 2018, 57, 6095–6099; Angew. Chem. 2018, 130, 6203–6207.
- 7C. T. Chen, Acta. Phys. Sin. 1977, 26, 132–134.
- 8
- 8aG.-C. Guo, Y.-G. Yao, K.-C. Wu, L. Wu, J.-S. Huang, Prog. Chem. 2001, 13, 151–155;
- 8bS.-P. Guo, Y. Chi, G.-C. Guo, Coord. Chem. Rev. 2017, 335, 44–57;
- 8cS.-P. Guo, X. Y. Chen, Z.-D. Sun, Y. Chi, B.-W. Liu, X.-M. Jiang, S.-F. Li, H.-G. Xue, S. Q. Deng, V. Duppel, J. Köhler, G.-C. Guo, Angew. Chem. Int. Ed. 2019, 58, 8087—8091; Angew. Chem. 2018, 131, 8171–8175.
- 9
- 9aZ. Li, Y. Yang, Y. Guo, W. Xing, X. Luo, Z. Lin, J. Yao, Y. Wu, Chem. Mater. 2019, 31, 1110–1117;
- 9bG. Li, K. Wu, Q. Liu, Z. Yang, S. Pan, J. Am. Chem. Soc. 2016, 138, 7422–7428;
- 9cH. Lin, B.-X. Li, H. Chen, P.-F. Liu, L.-M. Wu, X.-T. Wu, Q.-L. Zhu, Inorg. Chem. Front. 2018, 5, 1458–1462.
- 10B.-W. Liu, C.-L. Hu, H.-Y. Zeng, X.-M. Jiang, G.-C. Guo, Adv. Opt. Mater. 2018, 6, 1800156.
- 11P. Yu, L. J. Zhou, L. Chen, J. Am. Chem. Soc. 2012, 134, 2227–2235.
- 12X. Lin, G. Zhang, N. Ye, Cryst. Growth Des. 2009, 9, 1186–1189.
- 13J. A. Brant, D. J. Clark, Y. S. Kim, J. I. Jang, J.-H. Zhang, J. A. Aitken, Chem. Mater. 2014, 26, 3045–3048.
- 14K. Wu, Z. Yang, S. Pan, Angew. Chem. Int. Ed. 2016, 55, 6713–6715; Angew. Chem. 2016, 128, 6825–6827.
- 15B.-W. Liu, H.-Y. Zeng, X.-M. Jiang, G.-E. Wang, S.-F. Li, L. Xu, G.-C. Guo, Chem. Sci. 2016, 7, 6273–6277.
- 16K. Feng, L. Kang, Z. Lin, J. Yao, Y. Wu, J. Mater. Chem. C 2014, 2, 4590–4596.
- 17C. D. Malliakas, M. G. Kanatzidis, J. Am. Chem. Soc. 2006, 128, 6538–6539.
- 18M. J. Manos, R. G. Iyer, E. Quarez, J. H. Liao, M. G. Kanatzidis, Angew. Chem. Int. Ed. 2005, 44, 3552–3555; Angew. Chem. 2005, 117, 3618–3621.
- 19S. P. Guo, G. C. Guo, M. S. Wang, J. P. Zou, H. Y. Zeng, L. Z. Cai, J. S. Huang, Chem. Commun. 2009, 4366–4368.
- 20T. J. McCarthy, T. A. Tamer, M. G. Kanatzidis, J. Am. Chem. Soc. 1995, 117, 1294–1301.
- 21S. K. Kurtz, T. T. Perry, J. Appl. Phys. 1968, 39, 3798–3813.
- 22G. Li, Y. Chu, Z. Zhou, Chem. Mater. 2018, 30, 602–606.
- 23Y.-Y. Li, P.-F. Liu, L.-M. Wu, Chem. Mater. 2017, 29, 5259–5266.
- 24P. A. Maggard, T. S. Nault, C. L. Stern, K. R. Poeppelmeier, J. Solid State Chem. 2003, 175, 27–33.
- 25M.-J. Zhang, X.-M. Jiang, L.-J. Zhou, G.-C. Guo, J. Mater. Chem. C 2013, 1, 4754.
- 26S. Chandra, T. H. Allik, G. Catella, J. A. Hutchinson, Advanced Solid-State Lasers, OSA Trends in Optics and Photonics Series 1998, 19, 282–284.
- 27S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 2005, 220, 567–570.
- 28S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 2001, 73, 515–562.
- 29S. Sharma, C. Ambrosch-Draxl, Phys. Scr. 2004, T109, 128–134.
- 30J. Androulakis, S. C. Peter, H. Li, C. D. Malliakas, J. A. Peters, Z. Liu, B. W. Wessels, J. H. Song, H. Jin, A. J. Freeman, M. G. Kanatzidis, Adv. Mater. 2011, 23, 4163–4167.