NiH-Catalyzed Reductive Relay Hydroalkylation: A Strategy for the Remote C(sp3)−H Alkylation of Alkenes
Fang Zhou
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorJin Zhu
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorYao Zhang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorCorresponding Author
Prof. Shaolin Zhu
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorFang Zhou
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorJin Zhu
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorYao Zhang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorCorresponding Author
Prof. Shaolin Zhu
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorDedicated to Professor David W. C. MacMillan on the occasion of his 50th birthday
Graphical Abstract
The synergistic combination of chain walking, a process involving repeated migratory insertions and β-H eliminations, and cross-coupling chemistry led to the development of a mild, efficient NiH-catalyzed process for the remote hydroalkylation of alkenes. Unfunctionalized C(sp3)−C(sp3) bonds were constructed from two simple feedstock chemicals, namely olefins and alkyl halides.
Abstract
The terminal-selective, remote C(sp3)−H alkylation of alkenes was achieved by a relay process combining NiH-catalyzed hydrometalation, chain walking, and alkylation. This method enables the construction of unfunctionalized C(sp3)−C(sp3) bonds under mild conditions from two simple feedstock chemicals, namely olefins and alkyl halides. The practical value of this transformation is further demonstrated by the large-scale and regioconvergent alkylation of isomeric mixtures of olefins at low catalyst loadings.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201712731-sup-0001-misc_information.pdf18.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aE. Geist, A. Kirschning, T. Schmidt, Nat. Prod. Rep. 2014, 31, 441;
- 1bF. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752.
- 2A. de Meijere, F. Diederich in Metal-catalyzed Cross-coupling Reactions, 2nd ed., Wiley-VCH, Weinheim, 2004.
10.1002/9783527619535 Google Scholar
- 3
- 3aD. Haas, J. M. Hammann, R. Greiner, P. Knochel, ACS Catal. 2016, 6, 1540;
- 3bV. B. Phapale, D. J. Cárdenas, Chem. Soc. Rev. 2009, 38, 1598.
- 4M. R. Netherton, C. Dai, K. Neuschütz, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 10099.
- 5For selected reviews, see:
- 5aM. R. Netherton, G. C. Fu, Adv. Synth. Catal. 2004, 346, 1525;
- 5bR. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417;
- 5cX. Hu, Chem. Sci. 2011, 2, 1867;
- 5d“Organonickel Chemistry”: J. Montgomery in Organometallics in Synthesis (Ed.: ), Wiley, Hoboken, 2013, pp. 319–428;
10.1002/9781118651421.ch3 Google Scholar
- 5eS. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299;
- 5fV. P. Ananikov, ACS Catal. 2015, 5, 1964;
- 5gJ. Choi, G. C. Fu, Science 2017, https://doi.org/10.1126/science.aaf7230; for selected examples, see:
- 5hR. Giovannini, T. Stüdemann, G. Dussin, P. Knochel, Angew. Chem. Int. Ed. 1998, 37, 2387;
10.1002/(SICI)1521-3773(19980918)37:17<2387::AID-ANIE2387>3.0.CO;2-M CAS PubMed Web of Science® Google ScholarAngew. Chem. 1998, 110, 2512;10.1002/(SICI)1521-3757(19980904)110:17<2512::AID-ANGE2512>3.0.CO;2-0 Web of Science® Google Scholar
- 5iJ. Terao, H. Watanabe, A. Ikumi, H. Kuniyasu, N. Kambe, J. Am. Chem. Soc. 2002, 124, 4222;
- 5jJ. Zhou, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 14726;
- 5kT. J. Anderson, G. D. Jones, D. A. Vicic, J. Am. Chem. Soc. 2004, 126, 8100;
- 5lB. Saito, G. C. Fu, J. Am. Chem. Soc. 2007, 129, 9602;
- 5mB. Saito, G. C. Fu, J. Am. Chem. Soc. 2008, 130, 6694;
- 5nO. Vechorkin, X. Hu, Angew. Chem. Int. Ed. 2009, 48, 2937; Angew. Chem. 2009, 121, 2981;
- 5oX. Yu, T. Yang, S. Wang, H. Xu, H. Gong, Org. Lett. 2011, 13, 2138;
- 5pJ. T. Binder, C. J. Cordier, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 17003;
- 5qC. J. Cordier, R. J. Lundgren, G. C. Fu, J. Am. Chem. Soc. 2013, 135, 10946;
- 5rC. P. Johnston, R. T. Smith, S. Allmendinger, D. W. C. MacMillan, Nature 2016, 536, 322;
- 5sC. Le, Y. Liang, R. W. Evans, X. Li, D. W. C. MacMillan, Nature 2017, 547, 79;
- 5tT. Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S. B. Kawamura, D. Maxwell, M. D. Eastgate, P. S. Baran, Science 2016, 352, 801;
- 5uJ. Schmidt, J. Choi, A. T. Liu, M. Slusarczyk, G. C. Fu, Science 2016, 354, 1265.
- 6For selected reviews on C−H activation in total synthesis, see:
- 6aW. R. Gutekunst, P. S. Baran, Chem. Soc. Rev. 2011, 40, 1976;
- 6bL. McMurray, F. O'Hara, M. J. Gaunt, Chem. Soc. Rev. 2011, 40, 1885;
- 6cJ. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012, 51, 8960; Angew. Chem. 2012, 124, 9092;
- 6dM. C. White, Science 2012, 335, 807;
- 6eK. M. Engle, J.-Q. Yu, J. Org. Chem. 2013, 78, 8927.
- 7For reviews on remote functionalization through alkene isomerization, see:
- 7aA. Vasseur, J. Bruffaerts, I. Marek, Nat. Chem. 2016, 8, 209;
- 7bE. Larionov, H. Li, C. Mazet, Chem. Commun. 2014, 50, 9816.
- 8For palladium-catalyzed chain-walking processes, see:
- 8aT.-S. Mei, H. H. Patel, M. S. Sigman, Nature 2014, 508, 340;
- 8bT. Hamasaki, Y. Aoyama, J. Kawasaki, F. Kakiuchi, T. Kochi, J. Am. Chem. Soc. 2015, 137, 16163;
- 8cS. Dupuy, K.-F. Zhang, A.-S. Goutierre, O. Baudoin, Angew. Chem. Int. Ed. 2016, 55, 14793; Angew. Chem. 2016, 128, 15013;
- 8dL. Lin, C. Romano, C. Mazet, J. Am. Chem. Soc. 2016, 138, 10344;
- 8eS. Singh, J. Bruffaerts, A. Vasseur, I. Marek, Nat. Commun. 2017, 8, 14200.
- 9For zirconium-catalyzed chain-walking processes, see:
- 9aL. Mola, M. Sidera, S. P. Fletcher, Aust. J. Chem. 2015, 68, 401;
- 9bA. Masarwa, D. Didier, T. Zabrodski, M. Schinkel, L. Ackermann, I. Marek, Nature 2014, 505, 199.
- 10For rhodium-catalyzed chain-walking processes, see:
- 10aK. Yoshida, T. Hayashi, J. Am. Chem. Soc. 2003, 125, 2872;
- 10bG. C. Tsui, M. Lautens, Angew. Chem. Int. Ed. 2010, 49, 8938; Angew. Chem. 2010, 122, 9122;
- 10cJ. Ryu, S. H. Cho, S. Chang, Angew. Chem. Int. Ed. 2012, 51, 3677; Angew. Chem. 2012, 124, 3737;
- 10dC. M. Filloux, T. Rovis, J. Am. Chem. Soc. 2015, 137, 508;
- 10eJ. I. Martínez, J. J. Smith, H. B. Hepburn, H. W. Lam, Angew. Chem. Int. Ed. 2016, 55, 1108; Angew. Chem. 2016, 128, 1120.
- 11For cobalt-catalyzed chain-walking processes, see:
- 11aJ. V. Obligacion, P. J. Chirik, J. Am. Chem. Soc. 2013, 135, 19107;
- 11bT. Yamakawa, N. Yoshikai, Chem. Asian J. 2014, 9, 1242;
- 11cM. L. Scheuermann, E. J. Johnson, P. J. Chirik, Org. Lett. 2015, 17, 2716.
- 12For nickel-catalyzed chain-walking processes, see:
- 12aW.-C. Lee, C.-H. Wang, Y.-H. Lin, W.-C. Shih, T.-G. Ong, Org. Lett. 2013, 15, 5358;
- 12bJ. S. Bair, Y. Schramm, A. G. Sergeev, E. Clot, O. Eisenstein, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 13098;
- 12cI. Buslov, J. Becouse, S. Mazza, M. Montandon-Clerc, X. Hu, Angew. Chem. Int. Ed. 2015, 54, 14523; Angew. Chem. 2015, 127, 14731;
- 12dI. Buslov, F. Song, X. Hu, Angew. Chem. Int. Ed. 2016, 55, 12295; Angew. Chem. 2016, 128, 12483;
- 12eY. He, Y. Cai, S. Zhu, J. Am. Chem. Soc. 2017, 139, 1061;
- 12fF. Juliá-Hernández, T. Moragas, J. Cornella, R. Martin, Nature 2017, 545, 84;
- 12gM. Gaydou, T. Moragas, F. Juliá-Hernández, R. Martin, J. Am. Chem. Soc. 2017, 139, 12161;
- 12hF. Chen, K. Chen, Y. Zhang, Y. He, Y.-M. Wang, S. Zhu, J. Am. Chem. Soc. 2017, 139, 13929;
- 12iL. Peng, Y. Li, Y. Li, W. Wang, H. Pang, G. Yin, ACS Catal. 2018, 8, 310.
- 13For selected reviews on metal hydride chemistry, see:
- 13aS. Rendler, M. Oestereich, Angew. Chem. Int. Ed. 2007, 46, 498; Angew. Chem. 2007, 119, 504;
- 13bC. Deutsch, N. Krause, B. H. Lipshutz, Chem. Rev. 2008, 108, 2916;
- 13cM. D. Greenhalgh, A. S. Jones, S. P. Thomas, ChemCatChem 2015, 7, 190;
- 13dR. M. Maksymowicz, A. J. Bissette, S. P. Fletcher, Chem. Eur. J. 2015, 21, 5668;
- 13eM. T. Pirnot, Y.-M. Wang, S. L. Buchwald, Angew. Chem. Int. Ed. 2016, 55, 48; Angew. Chem. 2016, 128, 48;
- 13fS. W. M. Crossley, C. Obradors, R. M. Martinez, R. A. Shenvi, Chem. Rev. 2016, 116, 8912;
- 13gK. D. Nguyen, B. Y. Park, T. Luong, H. Sato, V. J. Garza, M. J. Krische, Science 2016, 354, 300;
- 13hN. A. Eberhardt, H. Guan, Chem. Rev. 2016, 116, 8373.
- 14NiI hydride and alkyl species have previously been proposed as intermediates in nickel-catalyzed olefin isomerization; see:
- 14aI. Colon, D. R. Kelsey, J. Org. Chem. 1986, 51, 2627;
- 14bI. Pappas, S. Treacy, P. J. Chirik, ACS Catal. 2016, 6, 4105;
- 14cY. Kuang, D. Anthony, J. Katigbak, F. Marrucci, S. Humagain, T. Diao, Chem 2017, 3, 268;
- 14din some cases, it has been suggested that nickel(II) hydride species were involved; see: M. J. D'Aniello, E. K. Barefield, J. Am. Chem. Soc. 1978, 100, 1474.
- 15Preliminary data (see Tables S2 and S3 and Scheme S1 in the Supporting Information) support the hypothesis that olefin isomerization and C−C coupling are independent steps, with dissociation/reassociation of the NiH species from the olefin, giving rise to olefin isomers when the reaction is run to partial conversion.
- 16Preliminary data (Scheme S2 and Table S4 in the Supporting Information) support a radical mechanism (rather than an SN2 process or direct insertion) for the oxidative addition of the alkyl iodide.
- 17
- 17aX. Lu, B. Xiao, Z. Zhang, T. Gong, W. Su, Y. Fu, L. Liu, Nat. Commun. 2016, 7, 11129;
- 17bX. Lu, B. Xiao, L. Liu, Y. Fu, Chem. Eur. J. 2016, 22, 11161.
- 18CCDC 1572882 (3 v) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 19Competition experiments showed that the cross-coupling rate of secondary alkyl iodides is higher than that of primary ones (see Scheme S3 in the Supporting Information), consistent with a radical pathway in the C−X cleavage step (order of radical stability: secondary>primary).