Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate
Zhiwei Zhao
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
University of Science and Technology of China, Hefei, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Dr. Jun Huang
College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhangquan Peng
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorZhiwei Zhao
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
University of Science and Technology of China, Hefei, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Dr. Jun Huang
College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhangquan Peng
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
Search for more papers by this authorGraphical Abstract
Abstract
The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition of lithium carbonate Li2CO3 is of paramount importance. The discovery of Li2CO3 as the main discharge product in carbonate-based electrolytes once brought researchers to “the end of the idyll“ in the early 2010s. In the past few years, tremendous efforts have been made to understand the formation and decomposition mechanisms of Li2CO3, as well as to conceive novel chemical/material strategies to suppress the Li2CO3 formation and to facilitate the Li2CO3 decomposition. Moreover, the study on Li2CO3 in LABs is opening up a new research field in energy technology. Considering the rapid development and innumerous emerging issues, it is timely to recapitulate the current understandings, define the ambiguities and the scientific gaps, and discuss topics of high priority for future research, which is the aim of this Minireview.
Conflict of interest
The authors declare no conflict of interest.
References
- 1W. Ostwald, Z. Phys. Chem. 1894, 15, 409–421.
- 2S. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16–22.
- 3
- 3aT. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P. G. Bruce, J. Am. Chem. Soc. 2006, 128, 1390–1393;
- 3bA. Débart, A. J. Paterson, J. Bao, P. G. Bruce, Angew. Chem. Int. Ed. 2008, 47, 4521–4524; Angew. Chem. 2008, 120, 4597–4600.
- 4A. J. Smith, J. C. Burns, J. R. Dahn, Electrochem. Solid-State Lett. 2010, 13, A 177–A179.
- 5A. J. Smith, J. C. Burns, S. Trussler, J. R. Dahn, J. Electrochem. Soc. 2010, 157, A 196–A202.
- 6Y. Chen, S. A. Freunberger, Z. Peng, F. Barde, P. G. Bruce, J. Am. Chem. Soc. 2012, 134, 7952–7957.
- 7
- 7aD. Sharon, P. Sharon, D. Hirshberg, M. Salama, M. Afri, L. J. W. Shimon, W. J. Kwak, Y. K. Sun, A. A. Frimer, D. Aurbach, J. Am. Chem. Soc. 2017, 139, 11690–11693;
- 7bZ. Zhang, J. Lu, R. S. Assary, P. Du, H.-H. Wang, Y.-K. Sun, Y. Qin, K. C. Lau, J. Greeley, P. C. Redfern, H. Iddir, L. A. Curtiss, K. Amine, J. Phys. Chem. C 2011, 115, 25535–25542;
- 7cD. Xu, Z.-l. Wang, J.-j. Xu, L.-l. Zhang, X.-b. Zhang, Chem. Commun. 2012, 48, 6948–6950;
- 7dM. J. Trahan, S. Mukerjee, E. J. Plichta, M. A. Hendrickson, K. M. Abraham, J. Electrochem. Soc. 2012, 160, A 259–A267.
- 8B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshoj, J. K. Norskov, A. C. Luntz, J Phys Chem. Lett. 2012, 3, 997–1001.
- 9
- 9aM. D. Bhatt, H. Geaney, M. Nolan, C. O'Dwyer, Phys. Chem. Chem. Phys. 2014, 16, 12093–12130;
- 9bR. Black, B. Adams, L. F. Nazar, Adv. Energy Mater. 2012, 2, 801–815;
- 9cD. Capsoni, M. Bini, S. Ferrari, E. Quartarone, P. Mustarelli, J. Power Sources 2012, 220, 253–263;
- 9dB. D. McCloskey, C. M. Burke, J. E. Nichols, S. E. Renfrew, Chem. Commun. 2015, 51, 12701–12715;
- 9eR. Younesi, G. M. Veith, P. Johansson, K. Edstrom, T. Vegge, Energy Environ. Sci. 2015, 8, 1905–1922;
- 9fP. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nat. Mater. 2012, 11, 19–29;
- 9gN. Mahne, O. Fontaine, M. O. Thotiyl, M. Wilkening, S. A. Freunberger, Cheml Sci 2017, 8, 6716–6729;
- 9hX. Zhang, X.-G. Wang, Z. Xie, Z. Zhou, Green Energy Environ. 2016, 1, 4–17;
- 9iL. Wang, Y. Zhang, Z. Liu, L. Guo, Z. Peng, Green Energy Environ. 2017, 2, 186–203;
- 9jA. C. Luntz, B. D. McCloskey, Chem. Rev. 2014, 114, 11721–11750;
- 9kD. Aurbach, B. D. McCloskey, L. F. Nazar, P. G. Bruce, Nat. Energy 2016, 1, 16128.
- 10
- 10aW. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci. 2014, 7, 513–537;
- 10bD. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194–206.
- 11K. M. Abraham, Z. Jiang, J. Electrochem. Soc. 1996, 143, 1–5.
- 12
- 12aS. H. Oh, R. Black, E. Pomerantseva, J.-H. Lee, L. F. Nazar, Nat. Chem. 2012, 4, 1004–1010;
- 12bM. M. O. Thotiyl, S. A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P. G. Bruce, Nat. Mater. 2013, 12, 1049–1055;
- 12cZ.-L. Wang, D. Xu, J.-J. Xu, L.-L. Zhang, X.-B. Zhang, Adv. Funct. Mater. 2012, 22, 3699–3705;
- 12dJ.-J. Xu, D. Xu, Z.-L. Wang, H.-G. Wang, L.-L. Zhang, X.-B. Zhang, Angew. Chem. Int. Ed. 2013, 52, 3887–3890; Angew. Chem. 2013, 125, 3979–3982;
- 12eT. Song, U. Paik, J. Mater. Chem. A 2016, 4, 14–31;
- 12fH. Wang, H. Dai, Chem. Soc. Rev. 2013, 42, 3088–3113.
- 13
- 13aB. Zhou, L. Guo, Y. Zhang, J. Wang, L. Ma, W. H. Zhang, Z. Fu, Z. Peng, Adv. Mater. 2017, 29, 1701568;
- 13bS. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Barde, P. G. Bruce, Angew. Chem. Int. Ed. 2011, 50, 8609–8613; Angew. Chem. 2011, 123, 8768–8772;
- 13cN. Liu, Z. Lu, J. Zhao, M. T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, Nat. Nanotechnol. 2014, 9, 187–192;
- 13dM. Balaish, A. Kraytsberg, Y. Ein-Eli, Phys. Chem. Chem. Phys. 2014, 16, 2801–2822.
- 14F. Mizuno, S. Nakanishi, Y. Kotani, S. Yokoishi, H. Iba, Electrochemistry 2010, 78, 403–405.
- 15S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Barde, P. Novak, P. G. Bruce, J. Am. Chem. Soc. 2011, 133, 8040–8047.
- 16
- 16aB. D. McCloskey, D. S. Bethune, R. M. Shelby, G. Girishkumar, A. C. Luntz, J Phys Chem. Lett. 2011, 2, 1161–1166;
- 16bR. Black, S. H. Oh, J.-H. Lee, T. Yim, B. Adams, L. F. Nazar, J. Am. Chem. Soc. 2012, 134, 2902–2905;
- 16cZ. Peng, S. A. Freunberger, Y. Chen, P. G. Bruce, Science 2012, 337, 563–566.
- 17M. M. O. Thotiyl, S. A. Freunberger, Z. Peng, P. G. Bruce, J. Am. Chem. Soc. 2013, 135, 494–500.
- 18S. Yang, Y. Qiao, P. He, Y. Liu, Z. Cheng, J.-j. Zhu, H. Zhou, Energy Environ. Sci. 2017, 10, 972–978.
- 19W. Xu, J. Hu, M. H. Engelhard, S. A. Towne, J. S. Hardy, J. Xiao, J. Feng, M. Y. Hu, J. Zhang, F. Ding, M. E. Gross, J.-G. Zhang, J. Power Sources 2012, 215, 240–247.
- 20X. Gao, Y. Chen, L. R. Johnson, Z. P. jovanov, P. G. Bruce, Nat. Energy 2017, 2, 17118.
- 21
- 21aX. Jie, K. Uosaki, J. Electroanal. Chem. 2014, 716, 49–52;
- 21bS. Schaltin, G. Vanhoutte, M. Wu, F. Barde, J. Fransaer, Phys. Chem. Chem. Phys. 2015, 17, 12575–12586;
- 21cM. A. Schroeder, N. Kumar, A. J. Pearse, C. Liu, S. B. Lee, G. W. Rubloff, K. Leung, M. Noked, ACS Appl. Mater. Interfaces 2015, 7, 11402–11411.
- 22W. Walker, V. Giordani, J. Uddin, V. S. Bryantsev, G. V. Chase, D. Addison, J. Am. Chem. Soc. 2013, 135, 2076–2079.
- 23V. S. Bryantsev, V. Giordani, W. Walker, M. Blanco, S. Zecevic, K. Sasaki, J. Uddin, D. Addison, G. V. Chase, J. Phys. Chem. A 2011, 115, 12399–12409.
- 24K. R. Ryan, L. Trahey, B. J. Ingram, A. K. Burrell, J. Phys. Chem. C 2012, 116, 19724–19728.
- 25
- 25aR. S. Assary, K. C. Lau, K. Amine, Y.-K. Sun, L. A. Curtiss, J. Phys. Chem. C 2013, 117, 8041–8049;
- 25bN. Kumar, M. D. Radin, B. C. Wood, T. Ogitsu, D. J. Siegel, J. Phys. Chem. C 2015, 119, 9050–9060.
- 26V. S. Bryantsev, J. Uddin, V. Giordani, W. Walker, D. Addison, G. V. Chase, J. Electrochem. Soc. 2013, 160, A 160–A171.
- 27
- 27aJ. Xie, Q. Dong, I. Madden, X. Yao, Q. Cheng, P. Dornath, W. Fan, D. Wang, Nano Lett. 2015, 15, 8371–8376;
- 27bJ. R. Harding, C. V. Amanchukwu, P. T. Hammond, Y. Shao-Horn, J. Phys. Chem. C 2015, 119, 6947–6955.
- 28N. Mahne, B. Schafzahl, C. Leypold, M. Leypold, S. Grumm, A. Leitgeb, G. A. Strohmeier, M. Wilkening, O. Fontaine, D. Kramer, C. Slugovc, S. M. Borisov, S. A. Freunberger, Nat. Energy 2017, 2, 17036.
- 29J. Wandt, P. Jakes, J. Granwehr, H. A. Gasteiger, R. A. Eichel, Angew. Chem. Int. Ed. 2016, 55, 6892–6895; Angew. Chem. 2016, 128, 7006–7009.
- 30B. M. Gallant, R. R. Mitchell, D. G. Kwabi, J. Zhou, L. Zuin, C. V. Thompson, Y. Shao-Horn, J. Phys. Chem. C 2012, 116, 20800–20805.
- 31D. M. Itkis, D. A. Semenenko, E. Y. Kataev, A. I. Belova, V. S. Neudachina, A. P. Sirotina, M. Havecker, D. Teschner, A. Knop-Gericke, P. Dudin, A. Barinov, E. A. Goodilin, Y. Shao-Horn, L. V. Yashina, Nano Lett. 2013, 13, 4697–4701.
- 32P. Albertus, V. Viswanathan, J. F. Christensen, B. Kozinsky, R. Sanchez-Carrera, T. Lohmann, (Robert Bosch GmbH), US-A1 0094193, 2012.
- 33K. Takechi, T. Shiga, T. Asaoka, Chem. Commun. 2011, 47, 3463–3465.
- 34S. R. Gowda, A. Brunet, G. M. Wallraff, B. D. McCloskey, J Phys Chem. Lett. 2013, 4, 276–279.
- 35H. K. Lim, H. D. Lim, K. Y. Park, D. H. Seo, H. Gwon, J. Hong, W. A. Goddard III, H. Kim, K. Kang, J. Am. Chem. Soc. 2013, 135, 9733–9742.
- 36W. Yin, A. Grimaud, F. Lepoivre, C. Yang, J. M. Tarascon, J Phys Chem. Lett. 2017, 8, 214–222.
- 37S. Xu, S. K. Das, L. A. Archer, RSC Adv. 2013, 3, 6656–6660.
- 38Y. Liu, R. Wang, Y. Lyu, H. Li, L. Chen, Energy Environ. Sci. 2014, 7, 677–681.
- 39Y. Qiao, J. Yi, S. Wu, Y. Liu, S. Yang, P. He, H. Zhou, Joule 2017, 1, 1–12.
- 40
- 40aS. Meini, N. Tsiouvaras, K. U. Schwenke, M. Piana, H. Beyer, L. Lange, H. A. Gasteiger, Phys. Chem. Chem. Phys. 2013, 15, 11478–11493;
- 40bS. Yang, P. He, H. Zhou, Energy Environ. Sci. 2016, 9, 1650–1654.
- 41C. Ling, R. Zhang, K. Takechi, F. Mizuno, J. Phys. Chem. C 2014, 118, 26591–26598.
- 42
- 42aM. Hong, H. C. Choi, H. R. Byon, Chem. Mater. 2015, 27, 2234–2241;
- 42bR. Wang, X. Yu, J. Bai, H. Li, X. Huang, L. Chen, X. Yang, J. Power Sources 2012, 218, 113–118.
- 43W. Fan, X. Guo, D. Xiao, L. Gu, J. Phys. Chem. C 2014, 118, 7344–7350.
- 44L. Fan, D. Tang, D. Wang, Z. Wang, L. Chen, Nano Res. 2016, 9, 3903–3913.
- 45S. Song, W. Xu, J. Zheng, L. Luo, M. H. Engelhard, M. E. Bowden, B. Liu, C. M. Wang, J. G. Zhang, Nano Lett. 2017, 17, 1417–1424.
- 46Z. Liu, Y. Zhang, C. Jia, H. Wan, Z. Peng, Y. Bi, Y. Liu, Z. Peng, Q. Wang, H. Li, D. Wang, J.-G. Zhang, Nano Energy 2017, 36, 390–397.
- 47Y. Hou, J. Wang, L. Liu, Y. Liu, S. Chou, D. Shi, H. Liu, Y. Wu, W. Zhang, J. Chen, Adv. Funct. Mater. 2017, 27, 1700564.
- 48C. Li, Z. Guo, B. Yang, Y. Liu, Y. Wang, Y. Xia, Angew. Chem. Int. Ed. 2017, 56, 9126–9130; Angew. Chem. 2017, 129, 9254–9258.