Three-Dimensional Hierarchical Architectures Derived from Surface-Mounted Metal–Organic Framework Membranes for Enhanced Electrocatalysis
Gan Jia
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorWen Zhang
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorGuozheng Fan
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhaosheng Li
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Degang Fu
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 P. R. China
Search for more papers by this authorProf. Weichang Hao
Department of Physics and Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorProf. Chunwei Yuan
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 P. R. China
Search for more papers by this authorProf. Zhigang Zou
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorGan Jia
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorWen Zhang
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorGuozheng Fan
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhaosheng Li
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Degang Fu
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 P. R. China
Search for more papers by this authorProf. Weichang Hao
Department of Physics and Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorProf. Chunwei Yuan
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 P. R. China
Search for more papers by this authorProf. Zhigang Zou
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorGraphical Abstract
Burnt to a crisp: Surface-mounted metal–organic framework (MOF) membranes were pyrolyzed to produce electrocatalytic nanomaterials with 3D nanoarchitectures and abundant catalytic sites. Cobalt contained in the MOF thin-film has a dual function; it facilitates growth of nitrogen-doped carbon nanotubes and promotes oxygen reduction, hydrogen evolution, and oxygen evolution reactions.
Abstract
Inspired by the rapid development of metal–organic-framework-derived materials in various applications, a facile synthetic strategy was developed for fabrication of 3D hierarchical nanoarchitectures. A surface-mounted metal–organic framework membrane was pyrolyzed at a range of temperatures to produce catalysts with excellent trifunctional electrocatalytic efficiencies for the oxygen reduction, hydrogen evolution, and oxygen evolution reactions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201708385-sup-0001-misc_information.pdf4.7 MB | Supplementary |
anie201708385-sup-0001-Movie_S1.avi261.1 KB | Supplementary |
anie201708385-sup-0001-Movie_S2.avi481.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Energy Environ. Sci. 2015, 8, 1404–1427;
- 1bY. Jiao, Y. Zheng, M. Jaroniec, S. Qiao, Chem. Soc. Rev. 2015, 44, 2060–2086;
- 1cZ. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Energy Environ. Sci. 2013, 6, 347–370;
- 1dX. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148–5180.
- 2
- 2aN. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337–365;
- 2bD. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 2013, 12, 850–855;
- 2cJ. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 2015, 10, 444–452;
- 2dG. Jia, Y. Hu, Q. Qian, Y. Yao, S. Zhang, Z. Li, Z. Zou, ACS Appl. Mater. Interfaces 2016, 8, 14527–14534;
- 2eH. Jin, H. Huang, Y. He, X. Feng, S. Wang, L. Dai, J. Wang, J. Am. Chem. Soc. 2015, 137, 7588–7591;
- 2fF. Song, X. Hu, J. Am. Chem. Soc. 2014, 136, 16481–16484.
- 3H. C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673–674.
- 4
- 4aS. S. Kaye, A. Dailly, O. M. Yaghi, J. R. Long, J. Am. Chem. Soc. 2007, 129, 14176–14177;
- 4bA. U. Czaja, N. Trukhan, U. Müller, Chem. Soc. Rev. 2009, 38, 1284–1293;
- 4cS. Zhao, Y. Wang, J. Dong, C. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy 2016, 1, 16184.
- 5
- 5aO. Shekhah, J. Liu, R. A. Fischer, C. Wöll, Chem. Soc. Rev. 2011, 40, 1081–1106;
- 5bB. Liu, O. Shekhah, H. K. Arslan, J. Liu, C. Wöll, R. A. Fischer, Angew. Chem. Int. Ed. 2012, 51, 807–810; Angew. Chem. 2012, 124, 831–835;
- 5cA. Bétard, R. A. Fischer, Chem. Rev. 2012, 112, 1055–1083;
- 5dH. T. Kwon, H. K. Jeong, J. Am. Chem. Soc. 2013, 135, 10763–10768.
- 6
- 6aP. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem. Int. Ed. 2016, 55, 10800–10805; Angew. Chem. 2016, 128, 10958–10963;
- 6bH. Wang, Q. Zhu, R. Zou, Q. Xu, Chem 2017, 2, 52–80;
- 6cJ. Meng, C. Niu, L. Xu, J. Li, X. Liu, X. Wang, Y. Wu, X. Xu, W. Chen, Q. Li, Z. Zhu, D. Zhao, L. Mai, J. Am. Chem. Soc. 2017, 139, 8212–8221;
- 6dX. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, X. Li, J. Mater. Chem. A 2014, 2, 14064–14070.
- 7B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. D. Lou, X. Wang, Nat. Energy 2016, 1, 15006.
- 8
- 8aZ. Gu, D. Zhang, W. Fu, Z. Fu, M. I. Vohra, L. Zhang, C. Wöll, J. Zhang, Inorg. Chem. 2017, 56, 3526–3531;
- 8bZ. Zhong, J. Yao, Z. X. Low, R. Chen, M. He, H. Wang, Carbon 2014, 72, 242–249.
- 9
- 9aV. H. Pham, J. H. Dickerson, ACS Appl. Mater. Interfaces 2014, 6, 14181–14188;
- 9bA. Wilke, J. Weber, J. Mater. Chem. 2011, 21, 5226–5229.
- 10
- 10aZ. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, M. Wei, D. G. Evans, X. Duan, Adv. Mater. 2016, 28, 2337–2344;
- 10bJ. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, J. Am. Chem. Soc. 2015, 137, 1572–1580.
- 11
- 11aH. P. Cong, X. C. Ren, P. Wang, S. H. Yu, Energy Environ. Sci. 2013, 6, 1185–1191;
- 11bL. Lai, J. R. Potts, D. Zhan, L. Wang, C. K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R. S. Ruoff, Energy Environ. Sci. 2012, 5, 7936–7942.
- 12M. Xiao, J. Zhu, L. Feng, C. Liu, W. Xing, Adv. Mater. 2015, 27, 2521–2527.
- 13Y. Yang, L. Jia, B. Hou, D. Li, J. Wang, Y. Sun, J. Phys. Chem. C 2014, 118, 268–277.