Which Metals are Green for Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au Salts
Dr. Ksenia S. Egorova
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991 Russia
Search for more papers by this authorCorresponding Author
Prof. Dr. Valentine P. Ananikov
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991 Russia
Department of Chemistry, Saint Petersburg State University, Stary Petergof, 198504 Russia
Search for more papers by this authorDr. Ksenia S. Egorova
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991 Russia
Search for more papers by this authorCorresponding Author
Prof. Dr. Valentine P. Ananikov
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991 Russia
Department of Chemistry, Saint Petersburg State University, Stary Petergof, 198504 Russia
Search for more papers by this authorGraphical Abstract
Heavy weights versus the light weights: A comparison of available data on biological activity of metals commonly used in catalysis suggests that the assumption of toxic heavy metals and benign lighter metals should be re-evaluated. The available experimental data are insufficient for accurate evaluation of biological activity of these metals. Therefore, without dedicated experimental measurements, toxicity should not be used as a “selling point” when describing new catalysts.
Abstract
Environmental profiles for the selected metals were compiled on the basis of available data on their biological activities. Analysis of the profiles suggests that the concept of toxic heavy metals and safe nontoxic alternatives based on lighter metals should be re-evaluated. Comparison of the toxicological data indicates that palladium, platinum, and gold compounds, often considered heavy and toxic, may in fact be not so dangerous, whereas complexes of nickel and copper, typically assumed to be green and sustainable alternatives, may possess significant toxicities, which is also greatly affected by the solubility in water and biological fluids. It appears that the development of new catalysts and novel applications should not rely on the existing assumptions concerning toxicity/nontoxicity. Overall, the available experimental data seem insufficient for accurate evaluation of biological activity of these metals and its modulation by the ligands. Without dedicated experimental measurements for particular metal/ligand frameworks, toxicity should not be used as a “selling point” when describing new catalysts.
References
- 1
- 1aA. R. Muci, S. L. Buchwald in Cross-Coupling Reactions (Ed.: ), Springer, Berlin, Heidelberg, 2002, pp. 131–209;
10.1007/3-540-45313-X_5 Google Scholar
- 1bJ. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books, Sausalito, 2009;
- 1c Hydrofunctionalization (Eds.: ), Springer, Berlin, 2013;
- 1d Metal-Catalyzed Cross-Coupling Reactions and More (Eds.: ), Wiley-VCH, Weinheim, 2013;
- 1e Olefin Metathesis: Theory and Practice (Ed.: ), Wiley, Hoboken, 2014;
- 1f Homogeneous Catalysis for Unreactive Bond Activation (Ed.: ), Wiley, Hoboken, 2015;
- 1gJ. M. Thomas, W. J. Thomas, Principles and Practice of Heterogeneous Catalysis, Wiley-VCH, Weinheim, 2015.
- 2
- 2aP. Sehnal, R. J. Taylor, I. J. Fairlamb, Chem. Rev. 2010, 110, 824–889;
- 2bA. Molnár, Chem. Rev. 2011, 111, 2251–2320;
- 2cS. R. Neufeldt, M. S. Sanford, Acc. Chem. Res. 2012, 45, 936–946;
- 2dD. C. Powers, T. Ritter, Acc. Chem. Res. 2012, 45, 840–850;
- 2eM. García-Melchor, A. A. Braga, A. Lledós, G. Ujaque, F. Maseras, Acc. Chem. Res. 2013, 46, 2626–2634;
- 2fX. F. Wu, H. Neumann, M. Beller, Chem. Rev. 2013, 113, 1–35;
- 2gR. Chinchilla, C. Najera, Chem. Rev. 2014, 114, 1783–1826;
- 2hD. G. Musaev, T. M. Figg, A. L. Kaledin, Chem. Soc. Rev. 2014, 43, 5009–5031;
- 2iT. Sperger, I. A. Sanhueza, I. Kalvet, F. Schoenebeck, Chem. Rev. 2015, 115, 9532–9586.
- 3
- 3aW. Yu, M. D. Porosoff, J. G. Chen, Chem. Rev. 2012, 112, 5780–5817;
- 3bA. Fürstner, Acc. Chem. Res. 2014, 47, 925–938;
- 3cN. Kakati, J. Maiti, S. H. Lee, S. H. Jee, B. Viswanathan, Y. S. Yoon, Chem. Rev. 2014, 114, 12397–12429;
- 3dY. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 2015, 44, 2168–2201.
- 4
- 4aD. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351–3378;
- 4bM. Stratakis, H. Garcia, Chem. Rev. 2012, 112, 4469–4506;
- 4cC. M. Friend, A. S. Hashmi, Acc. Chem. Res. 2014, 47, 729–730;
- 4dC. Obradors, A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902–912;
- 4eR. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028–9072;
- 4fA. S. Dudnik, N. Chernyak, V. Gevorgyan, Aldrichim. Acta 2010, 43, 37–46.
- 5
- 5aI. D. Gridnev, T. Imamoto, Acc. Chem. Res. 2004, 37, 633–644;
- 5bJ. Klosin, C. R. Landis, Acc. Chem. Res. 2007, 40, 1251–1259;
- 5cJ. C. Lewis, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2008, 41, 1013–1025;
- 5dD. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2012, 45, 814–825;
- 5eG. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651–3678;
- 5fP. Etayo, A. Vidal-Ferran, Chem. Soc. Rev. 2013, 42, 728–754;
- 5gB. Ye, N. Cramer, Acc. Chem. Res. 2015, 48, 1308–1318.
- 6
- 6aA. Correa, O. G. Mancheno, C. Bolm, Chem. Soc. Rev. 2008, 37, 1108–1117;
- 6bB. D. Sherry, A. Furstner, Acc. Chem. Res. 2008, 41, 1500–1511;
- 6cC. L. Sun, B. J. Li, Z. J. Shi, Chem. Rev. 2011, 111, 1293–1314;
- 6dS. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299–309;
- 6eJ. C. Tellis, D. N. Primer, G. A. Molander, Science 2014, 345, 433–436;
- 6fI. T. Trotuş, T. Zimmermann, F. Schüth, Chem. Rev. 2014, 114, 1761–1782;
- 6gV. P. Ananikov, ACS Catal. 2015, 5, 1964–1971;
- 6hI. Bauer, H. J. Knolker, Chem. Rev. 2015, 115, 3170–3387;
- 6iR. B. Bedford, Acc. Chem. Res. 2015, 48, 1485–1493;
- 6jP. J. Chirik, Acc. Chem. Res. 2015, 48, 1687–1695;
- 6kM. Henrion, V. Ritleng, M. J. Chetcuti, ACS Catal. 2015, 5, 1283–1302;
- 6lE. P. Jackson, H. A. Malik, G. J. Sormunen, R. D. Baxter, P. Liu, H. Wang, A. R. Shareef, J. Montgomery, Acc. Chem. Res. 2015, 48, 1736–1745;
- 6mT. Kurahashi, S. Matsubara, Acc. Chem. Res. 2015, 48, 1703–1716;
- 6nA. P. Prakasham, P. Ghosh, Inorg. Chim. Acta 2015, 431, 61–100;
- 6oE. A. Standley, S. Z. Tasker, K. L. Jensen, T. F. Jamison, Acc. Chem. Res. 2015, 48, 1503–1514;
- 6pM. Tobisu, N. Chatani, Acc. Chem. Res. 2015, 48, 1717–1726;
- 6qV. Ritleng, M. Henrion, M. J. Chetcuti, ACS Catal. 2016, 6, 890–906.
- 7
- 7aS. Reymond, J. Cossy, Chem. Rev. 2008, 108, 5359–5406;
- 7bJ. E. Hein, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1302–1315;
- 7cI. P. Beletskaya, A. V. Cheprakov, Organometallics 2012, 31, 7753–7808;
- 7dS. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem. Rev. 2013, 113, 6234–6458;
- 7eC. Sambiagio, S. P. Marsden, A. J. Blacker, P. C. McGowan, Chem. Soc. Rev. 2014, 43, 3525–3550;
- 7fD. J. Stacchiola, Acc. Chem. Res. 2015, 48, 2151–2158.
- 8J. H. Duffus, Pure Appl. Chem. 2002, 74, 793–807.
- 9
- 9aK. Boch, M. Schuster, G. Risse, M. Schwarzer, Anal. Chim. Acta 2002, 459, 257–265;
- 9bP. Smichowski, D. Gómez, C. Frazzoli, S. Caroli, Appl. Spectrosc. Rev. 2007, 43, 23–49;
- 9cM. Balcerzak, Crit. Rev. Anal. Chem. 2011, 41, 214–235;
- 9dS. Uibel, M. Takemura, D. Mueller, D. Quarcoo, D. Klingelhoefer, D. A. Groneberg, J. Occup. Med. Toxicol. 2012, 7, 13;
- 9eF. Zereini, H. Alsenz, C. L. Wiseman, W. Püttmann, E. Reimer, R. Schleyer, E. Bieber, M. Wallasch, Sci. Total Environ. 2012, 416, 261–268;
- 9fA. S. Kashin, V. P. Ananikov, J. Org. Chem. 2013, 78, 11117–11125;
- 9gL. V. Romashov, G. D. Rukhovich, V. P. Ananikov, RSC Adv. 2015, 5, 107333–107339.
- 10
- 10aD. G. Barceloux, Clin. Toxicol. 1999, 37, 217–230;
- 10bD. G. Barceloux, Clin. Toxicol. 1999, 37, 239–258;
- 10cE. Denkhaus, K. Salnikow, Crit. Rev. Oncol. Hematol. 2002, 42, 35–56;
- 10dA. R. Oller, Environ. Health Perspect. Suppl. 2002, 110, 841–844;
- 10eB. Desoize, Anticancer Res. 2004, 24, 1529–1544;
- 10fR. K. Sharma, M. Agrawal, J. Environ. Biol. 2005, 26, 301–313;
- 10gG. Cairo, F. Bernuzzi, S. Recalcati, Genes Nutr. 2006, 1, 25–39;
- 10hD. Chen, V. Milacic, M. Frezza, Q. P. Dou, Curr. Pharm. Des. 2009, 15, 777–791.
- 11
- 11aR. Eisler, Inflammation Res. 2003, 52, 487–501;
- 11bS. Zimmermann, J. Messerschmidt, A. von Bohlen, B. Sures, Environ. Res. 2005, 98, 203–209;
- 11cC. Melber, I. Mangelsdorf in Palladium Emissions in the Environment (Eds.: ), Springer, Berlin, Heidelberg, 2006, pp. 575–596;
10.1007/3-540-29220-9_39 Google Scholar
- 11dP. Dolara, Int. J. Food Sci. Nutr. 2014, 65, 911–924;
- 11eM. Chen, S. Chen, M. Du, S. Tang, W. Wang, H. Yang, Q. Chen, J. Chen, Aquat. Toxicol. 2015, 159, 208–216.
- 12
- 12aD. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem. Int. Ed. 2005, 44, 7852–7872; Angew. Chem. 2005, 117, 8062–8083;
- 12bA. M. Trzeciak, J. J. Ziółkowski, Coord. Chem. Rev. 2005, 249, 2308–2322;
- 12cN. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv. Synth. Catal. 2006, 348, 609–679;
- 12dI. Pryjomska-Ray, A. Gniewek, A. M. Trzeciak, J. J. Ziółkowski, W. Tylus, Top. Catal. 2006, 40, 173–184;
- 12eA. M. Trzeciak, J. J. Ziółkowski, Coord. Chem. Rev. 2007, 251, 1281–1293;
- 12fA. Balanta, C. Godard, C. Claver, Chem. Soc. Rev. 2011, 40, 4973–4985;
- 12gS. K. Beaumont, J. Chem. Technol. Biotechnol. 2012, 87, 595–600;
- 12hR. H. Crabtree, Chem. Rev. 2012, 112, 1536–1554;
- 12iC. Deraedt, D. Astruc, Acc. Chem. Res. 2014, 47, 494–503.
- 13S. Hübner, J. G. de Vries, V. Farina, Adv. Synth. Catal. 2016, 358, 3–25.
- 14C. A. Flemming, J. T. Trevors, Water Air Soil Pollut. 1989, 44, 143–158.
- 15 Iron Catalysis: Fundamentals and Applications (Ed.: ), Springer, Berlin, Heidelberg, 2011.
- 16
- 16aC. M. Flynn, Chem. Rev. 1984, 84, 31–41;
- 16bS. Musić, S. Krehula, S. Popović, Ž. Skoko, Mater. Lett. 2003, 57, 1096–1102.
- 17
- 17aT. Gebel in Anthropogenic Platinum-Group Element Emissions (Eds.: ), Springer, Berlin, Heidelberg, 2000, pp. 245–255;
10.1007/978-3-642-59678-0_25 Google Scholar
- 17bR. A. Yokel, S. M. Lasley, D. C. Dorman, J. Toxicol. Environ. Health Part B 2006, 9, 63–85;
- 17c Handbook on Metals in Clinical and Analytical Chemistry (Eds.: ), Marcel Dekker, New York, 1994.
- 18D. Beyersmann, A. Hartwig, Arch. Toxicol. 2008, 82, 493–512.
- 19“EnvironmentalChemistry”. Available from http://environmentalchemistry.com/yogi/periodic/ (accessed February 2016).
- 20“U. S. Geological Survey”. Available from http://minerals.usgs.gov/minerals/pubs/commodity/ (accessed February 2016).
- 21P. Patnaik, Handbook of Inorganic Chemicals, McGraw-Hill, New York, 2002.
- 22M. Gregory, J. Matthey, Technol. Rev. 2014, 58, 212–216.
- 23 Handbook of Preparative Inorganic Chemistry (Ed.: ), Academic Press, London, 1963.
- 24D. L. Perry, Handbook of Inorganic Compounds, CRC, Boca Raton, 2011.
10.1201/b10908 Google Scholar
- 25
- 25aC. Colombo, A. J. Monhemius, J. A. Plant, Ecotoxicol. Environ. Saf. 2008, 71, 722–730;
- 25bA. R. Oller, D. Cappellini, R. G. Henderson, H. K. Bates, J. Environ. Monit. 2009, 11, 823–829;
- 25cA. Semisch, J. Ohle, B. Witt, A. Hartwig, Part. Fibre Toxicol. 2014, 11, 10.
- 26J. E. Goodman, R. L. Prueitt, S. Thakali, A. R. Oller, Crit. Rev. Toxicol. 2011, 41, 142–174.
- 27J. E. Goodman, R. L. Prueitt, D. G. Dodge, S. Thakali, Crit. Rev. Toxicol. 2009, 39, 365–417.
- 28“Repeated dose 28-day oral toxicity study in rodents” in OECD guideline for the testing of chemicals 2008.
- 29
- 29a“Acute eye irritation/corrosion” in OECD guideline for the testing of chemicals, 2012;
- 29b“In vitro skin irritation: reconstructed human epidermis test method” in OECD guideline for the testing of chemicals, 2013.
- 30
- 30a“Extended one-generation reproductive toxicity study” in OECD guideline for the testing of chemicals, 2012;
- 30b“Carcinogenicity studies” in OECD guideline for the testing of chemicals, 2009.
- 31R. Scherliess, Int. J. Pharm. 2011, 411, 98–105.
- 32“Daphnia sp., acute immobilization test and reproduction test” in OECD guideline for the testing of chemicals, 1984.
- 33“Sigma–Aldrich”. Available from https://www.sigmaaldrich.com (accessed April 2016).
- 34“WHO: Numerical list of EHCs.”. Available from http://www.who.int/ipcs/publications/ehc/ehc_numerical/en/ (accessed April 2016).
- 35G. K. Schweitzer, L. L. Pesterfield, The Aqueous Chemistry of the Elements, Oxford University Press, New York, 2010.
10.1093/oso/9780195393354.001.0001 Google Scholar
- 36J. O. Hoppe, G. M. Marcelli, M. L. Tainter, Am. J. Med. Sci. 1955, 230, 558–571.
- 37K. S. Egorova, V. P. Ananikov, ChemSusChem 2014, 7, 336–360.
- 38
- 38aE. L. McConnell, A. W. Basit, S. Murdan, J. Pharm. Pharmacol. 2008, 60, 63–70;
- 38bD. E. Beasley, A. M. Koltz, J. E. Lambert, N. Fierer, R. R. Dunn, PLoS One 2015, 10, e 0134116.
- 39R. G. Henderson, J. Durando, A. R. Oller, D. J. Merkel, P. A. Marone, H. K. Bates, Regul. Toxicol. Pharmacol. 2012, 62, 425–432.
- 40E. Horak, F. W. Sunderman, Toxicol. Appl. Pharmacol. 1975, 32, 316–329.
- 41L. P. Ridgway, D. A. Karnofsky, Ann. N. Y. Acad. Sci. 1952, 55, 203–215.
- 42K. E. Biesinger, G. M. Christensen, J. Fish. Res. Board Can. 1972, 29, 1691–1700.
- 43A. Yamamoto, R. Honma, M. Sumita, J. Biomed. Mater. Res. 1998, 39, 331–340.
10.1002/(SICI)1097-4636(199802)39:2<331::AID-JBM22>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 44P. L. Williams, D. B. Dusenbery, Toxicol. Ind. Health 1988, 4, 469–478.
- 45T. G. Rossman, J. T. Zelikoff, S. Agarwal, T. J. Kneip, Toxicol. Environ. Chem. 1987, 14, 251–262.
- 46W. Moore, D. Hysell, L. Hall, K. Campbell, J. Stara, Environ. Health Perspect. 1975, 10, 63–71.
- 47
- 47aD. J. Holbrook, M. E. Washington, H. B. Leake, P. E. Brubaker, Environ. Health Perspect. 1975, 10, 95–101;
- 47bD. J. Holbrook, M. E. Washington, H. B. Leake, P. E. Brubaker, J. Toxicol. Environ. Health Part A 1976, 1, 1067–1079.
- 48Hazardous Substances Data Bank (HSDB). Available from https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm (accessed April 2016).
- 49
- 49aS. Wagner, A. Gondikas, E. Neubauer, T. Hofmann, F. von der Kammer, Angew. Chem. Int. Ed. 2014, 53, 12398–12419; Angew. Chem. 2014, 126, 12604–12626;
- 49bA. Seabra, N. Durán, Metals 2015, 5, 934–975;
- 49cV. K. Sharma, J. Filip, R. Zboril, R. S. Varma, Chem. Soc. Rev. 2015, 44, 8410–8423.
- 50A. Muñoz, M. Costa, Toxicol. Appl. Pharmacol. 2012, 260, 1–16.
- 51R. M. Cabral, P. V. Baptista, Expert Rev. Mol. Diagn. 2014, 14, 1041–1052.
- 52
- 52aG. Schmid, Chem. Soc. Rev. 2008, 37, 1909–1930;
- 52bI. Fratoddi, I. Venditti, C. Cametti, M. V. Russo, Nano Res. 2015, 8, 1771–1799.
- 53M. Tsoli, H. Kuhn, W. Brandau, H. Esche, G. Schmid, Small 2005, 1, 841–844.
- 54K. Peynshaert, B. B. Manshian, F. Joris, K. Braeckmans, S. C. De Smedt, J. Demeester, S. J. Soenen, Chem. Rev. 2014, 114, 7581–7609.
- 55
- 55aM. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, A. Petri-Fink, Chem. Rev. 2012, 112, 2323–2338;
- 55bG. Liu, J. Gao, H. Ai, X. Chen, Small 2013, 9, 1533–1545.
- 56S. M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M. H. Zarrintan, K. Adibkia, Mater. Sci. Eng. C 2014, 44, 278–284.
- 57Y. Zhao, C. Ye, W. Liu, R. Chen, X. Jiang, Angew. Chem. Int. Ed. 2014, 53, 8127–8131; Angew. Chem. 2014, 126, 8265–8269.
- 58M. Horie, H. Kato, S. Endoh, K. Fujita, K. Nishio, L. K. Komaba, H. Fukui, A. Nakamura, A. Miyauchi, T. Nakazato, S. Kinugasa, Y. Yoshida, Y. Hagihara, Y. Morimoto, H. Iwahashi, Metallomics 2011, 3, 1244–1252.
- 59P. Konieczny, A. G. Goralczyk, R. Szmyd, L. Skalniak, J. Koziel, F. L. Filon, M. Crosera, A. Cierniak, E. K. Zuba-Surma, J. Borowczyk, E. Laczna, J. Drukala, E. Pyza, D. Semik, O. Woznicka, A. Klein, J. Jura, Int. J. Nanomed. 2013, 8, 3963–3975.
- 60J. Pelka, H. Gehrke, M. Esselen, M. Turk, M. Crone, S. Brase, T. Muller, H. Blank, W. Send, V. Zibat, P. Brenner, R. Schneider, D. Gerthsen, D. Marko, Chem. Res. Toxicol. 2009, 22, 649–659.
- 61R. Musacco-Sebio, N. Ferrarotti, C. Saporito-Magriñá, J. Semprine, J. Fuda, H. Torti, A. Boveris, M. G. Repetto, Metallomics 2014, 6, 1410–1416.
- 62
- 62aY. Yamagishi, A. Watari, Y. Hayata, X. Li, M. Kondoh, Y. Tsutsumi, K. Yagi, Pharmazie 2013, 68, 178–182;
- 62bY. Yamagishi, A. Watari, Y. Hayata, X. Li, M. Kondoh, Y. Yoshioka, Y. Tsutsumi, K. Yagi, Nanoscale Res. Lett. 2013, 8, 395.
- 63Z. Chen, H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia, T. Wang, H. Yuan, C. Ye, F. Zhao, Z. Chai, C. Zhu, X. Fang, B. Ma, L. Wan, Toxicol. Lett. 2006, 163, 109–120.
- 64M. J. Amorim, J. J. Scott-Fordsmand, Environ. Pollut. 2012, 164, 164–168.
- 65R. J. Griffitt, J. Luo, J. Gao, J. C. Bonzongo, D. S. Barber, Environ. Toxicol. Chem. 2008, 27, 1972–1978.
- 66P. Rajasekharreddy, P. U. Rani, J. Cluster Sci. 2014, 25, 1377–1388.
- 67A. Dumas, P. Couvreur, Chem. Sci. 2015, 6, 2153–2157.
- 68C. Petrarca, E. Clemente, L. Di Giampaolo, R. Mariani-Costantini, K. Leopold, R. Schindl, L. V. Lotti, R. Mangifesta, E. Sabbioni, Q. Niu, G. Bernardini, M. Di Gioacchino, J. Immunol. Res. 2014, 295092.
- 69
- 69aR. Magaye, J. Zhao, Environ. Toxicol. Pharmacol. 2012, 34, 644–650;
- 69bL. Capasso, M. Camatini, M. Gualtieri, Toxicol. Lett. 2014, 226, 28–34;
- 69cW. X. Duan, M. D. He, L. Mao, F. H. Qian, Y. M. Li, H. F. Pi, C. Liu, C. H. Chen, Y. H. Lu, Z. W. Cao, L. Zhang, Z. P. Yu, Z. Zhou, Toxicol. Appl. Pharmacol. 2015, 286, 80–91.
- 70
- 70aM. Horie, K. Nishio, K. Fujita, H. Kato, A. Nakamura, S. Kinugasa, S. Endoh, A. Miyauchi, K. Yamamoto, H. Murayama, E. Niki, H. Iwahashi, Y. Yoshida, J. Nakanishi, Chem. Res. Toxicol. 2009, 22, 1415–1426;
- 70bM. Horie, H. Fukui, K. Nishio, S. Endoh, H. Kato, K. Fujita, A. Miyauchi, A. Nakamura, M. Shichiri, N. Ishida, S. Kinugasa, Y. Morimoto, E. Niki, Y. Yoshida, H. Iwahashi, J. Occup. Health 2011, 53, 64–74.
- 71E. Forti, S. Salovaara, Y. Cetin, A. Bulgheroni, R. Tessadri, P. Jennings, W. Pfaller, P. Prieto, Toxicol. In Vitro 2011, 25, 454–461.
- 72K. K. Das, S. N. Das, S. A. Dhundasi, Indian J. Med. Res. 2008, 128, 412–425.
- 73 DFG, MAK and BAT Values 2015: Maximum Concentrations and Biological Tolerance Values at the Workplace, Wiley-VCH, Weinheim, 2015.
- 74K. De Brouwere, J. Buekers, C. Cornelis, C. E. Schlekat, A. R. Oller, Sci. Total Environ. 2012, 419, 25–36.
- 75D. Schaumlöffel, J. Trace Elem. Med. Biol. 2012, 26, 1–6.
- 76M. Cempel, G. Nikel, Pol. J. Environ. Stud. 2006, 15, 375–382.
- 77J. I. Phillips, F. Y. Green, J. C. Davies, J. Murray, Am. J. Ind. Med. 2010, 53, 763–767.
- 78J. M. Antonini, J. R. Roberts, D. Schwegler-Berry, R. R. Mercer, Ann. Occup. Hyg. 2013, 57, 1167–1179.
- 79B. Åkesson, S. Skerfving, Int. Arch. Occup. Environ. Health 1985, 56, 111–117.
- 80V. P. Chashschin, G. P. Artunina, T. Norseth, Sci. Total Environ. 1994, 148, 287–291.
- 81
- 81aA. Duda-Chodak, U. Błaszczyk, J. Elementol. 2008, 13, 685–696;
- 81bM. Saito, R. Arakaki, A. Yamada, T. Tsunematsu, Y. Kudo, N. Ishimaru, Int. J. Mol. Sci. 2016, 17, 202.
- 82W. S. Journeay, R. H. Goldman, Am. J. Ind. Med. 2014, 57, 1073–1076.
- 83A. Ambrose, P. Larson, J. Borzelleca, G. Hennigar, Jr., J. Food Sci. Technol. 1976, 13, 181–187.
- 84J. Jia, J. Chen, Environ. Toxicol. 2008, 23, 401–406.
- 85Z. Forgacs, P. Massányi, N. Lukac, Z. Somosy, J. Environ. Sci. Health Part A 2012, 47, 1249–1260.
- 86S. Saini, N. Nair, M. R. Saini, BioMed Res. Int. 2013, 701439.
- 87L. Kong, M. Tang, T. Zhang, D. Wang, K. Hu, W. Lu, C. Wei, G. Liang, Y. Pu, Int. J. Mol. Sci. 2014, 15, 21253–21269.
- 88
- 88aW. S. Cho, R. Duffin, C. A. Poland, S. E. Howie, W. MacNee, M. Bradley, I. L. Megson, K. Donaldson, Environ. Health Perspect. 2010, 118, 1699–1706;
- 88bW. S. Cho, R. Duffin, M. Bradley, I. L. Megson, W. Macnee, S. E. Howie, K. Donaldson, Eur. Respir. J. 2012, 39, 546–557.
- 89
- 89aP. A. Gillespie, G. S. Kang, A. Elder, R. Gelein, L. Chen, A. L. Moreira, J. Koberstein, K. M. Tchou-Wong, T. Gordon, L. C. Chen, Nanotoxicology 2010, 4, 106–119;
- 89bG. S. Kang, P. A. Gillespie, A. Gunnison, A. L. Moreira, K. M. Tchou-Wong, L. C. Chen, Environ. Health Perspect. 2011, 119, 176–181.
- 90H. A. Clancy, H. Sun, L. Passantino, T. Kluz, A. Munoz, J. Zavadil, M. Costa, Metallomics 2012, 4, 784–793.
- 91S. Czerczak, J. P. Gromiec, A. Pałaszewska-Tkacz, A. Świdwińska-Gajewska in Patty's Toxicology (Eds.: ), Wiley, New York, 2012, pp. 653–768.
10.1002/0471435139.tox041.pub2 Google Scholar
- 92Y. Chervona, A. Arita, M. Costa, Metallomics 2012, 4, 619–627.
- 93I. F. Scheiber, J. F. Mercer, R. Dringen, Prog. Neurobiol. 2014, 116, 33–57.
- 94P. G. Georgopoulos, A. Roy, M. J. Yonone-Lioy, R. E. Opiekun, P. J. Lioy, J. Toxicol. Environ. Health Part B 2001, 4, 341–394.
- 95L. Gaetke, C. K. Chow, Toxicology 2003, 189, 147–163.
- 96B. Lönnerdal, Am. J. Clin. Nutr. 2008, 88, 846s–850s.
- 97
- 97aT. Müller, H. Feichtinger, H. Berger, W. Müller, Lancet 1996, 347, 877–880;
- 97bA. Pandit, S. Bhave, Am. J. Clin. Nutr. 1996, 63, 830S–835S.
- 98S. K. Das, K. Ray, Nat. Clin. Pract. Neurol. 2006, 2, 482–493.
- 99C. M. Galhardi, Y. S. Diniz, L. A. Faine, H. G. Rodrigues, R. C. Burneiko, B. O. Ribas, E. L. Novelli, Food Chem. Toxicol. 2004, 42, 2053–2060.
- 100D. M. Templeton, Pure Appl. Chem. 2004, 76, 1255–1268.
- 101A. Donoso, P. Cruces, J. Camacho, J. C. Rios, E. Paris, J. J. Mieres, Clin. Toxicol. 2007, 45, 714–716.
- 102C. Hureau, P. Faller, Biochimie 2009, 91, 1212–1217.
- 103
- 103aN. Arnal, O. Castillo, M. J. de Alaniz, C. A. Marra, Int. J. Alzheimer's Dis. 2013, 2013, 645379;
10.1155/2013/645379 Google Scholar
- 103bA. Pal, R. Prasad, Biometals 2015, 28, 1–9.
- 104M. Valko, K. Jomova, C. J. Rhodes, K. Kuca, K. Musilek, Arch. Toxicol. 2016, 90, 1–37.
- 105
- 105aY. Kohgo, K. Ikuta, T. Ohtake, Y. Torimoto, J. Kato, Int. J. Hematol. 2008, 88, 7–15;
- 105bT. D. Coates, Free Radical Biol. Med. 2014, 72, 23–40.
- 106P. Brissot, Y. Deugnier, D. Guyader, G. Zanninelli, O. Loréal, R. Moirand, G. Lescoat in Progress in iron research (Ed.: ), Springer, New York, 1994, pp. 277–283.
- 107
- 107aC. W. Siah, J. Ombiga, L. A. Adams, D. Trinder, J. K. Olynyk, Clin. Biochem. Rev. 2006, 27, 5–16;
- 107bA. Shander, M. D. Cappellini, L. T. Goodnough, Vox Sang. 2009, 97, 185–197.
- 108S. Chatterjee, S. Sarkar, S. Bhattacharya, Chem. Res. Toxicol. 2014, 27, 1887–1900.
- 109Q. Zhang, J. Dai, A. Ali, L. Chen, X. Huang, Free Radical Res. 2009, 36, 285–294.
- 110J. Pauluhn, J. Appl. Toxicol. 2012, 32, 488–504.
- 111K. Thakerngpol, S. Fucharoen, P. Boonyaphipat, K. Srisook, S. Sahaphong, V. Vathanophas, T. Stitnimankarn, Biometals 1996, 9, 177–183.
- 112J. W. Eaton, M. Qian, Free Radical Biol. Med. 2002, 32, 833–840.
- 113R. S. Britton, G. A. Ramm, J. Olynyk, R. Singh, R. O'Neill, B. R. Bacon in Progress in iron research (Eds.: ), 1994, pp. 239–253.
10.1007/978-1-4615-2554-7_26 Google Scholar
- 114K. L. Watsky, Contact Dermatitis 2007, 57, 382–383.
- 115M. Ajdary, M. Z. Ghahnavieh, N. Naghsh, Adv. Biomed. Res. 2015, 4, 67.
- 116J. H. Sung, J. H. Ji, J. D. Park, M. Y. Song, K. S. Song, H. R. Ryu, J. U. Yoon, K. S. Jeon, J. Jeong, B. S. Han, Y. H. Chung, H. K. Chang, J. H. Lee, D. W. Kim, B. J. Kelman, I. J. Yu, Part. Fibre Toxicol. 2011, 8, 16.
- 117E. Cardoso, G. T. Rezin, E. T. Zanoni, F. de Souza Notoya, D. D. Leffa, A. P. Damiani, F. Daumann, J. C. Rodriguez, R. Benavides, L. da Silva, V. M. Andrade, M. M. da Silva Paula, Mutat. Res. 2014, 766–767, 25–30.
- 118
- 118aK. Ravindra, L. Bencs, R. Van Grieken, Sci. Total Environ. 2004, 318, 1–43;
- 118bC. L. Wiseman, F. Zereini, Sci. Total Environ. 2009, 407, 2493–2500.
- 119
- 119aJ. C. Wataha, C. T. Hanks, J. Oral Rehabil. 1996, 23, 309–320;
- 119bI. Iavicoli, B. Bocca, L. Fontana, S. Caimi, F. Petrucci, A. Bergamaschi, A. Alimonti, J. Toxicol. Environ. Health Part A 2008, 72, 88–93.
- 120
- 120aF. de Fine Olivarius, T. Menné, Contact Dermatitis 1992, 27, 71–73;
- 120bF. L. Filon, M. Crosera, M. Mauro, E. Baracchini, M. Bovenzi, T. Montini, P. Fornasiero, G. Adami, Environ. Pollut. 2016, 214, 497–503.
- 121T. C. Johnstone, K. Suntharalingam, S. J. Lippard, Philos. Trans. R. Soc. London Ser. A 2015, 373, 20140185.
- 122Z. E. Gagnon, C. Newkirk, S. Hicks, J. Environ. Sci. Health Part A 2006, 41, 397–414.
- 123
- 123aP. G. Bedello, M. Goitre, G. Roncarolo, S. Bundino, D. Cane, Contact Dermatitis 1987, 17, 111–112;
- 123bJ. De La Cuadra, M. Grau-Massanés, Contact Dermatitis 1991, 25, 182–184;
- 123cL. Stingeni, L. Brunelli, P. Lisi, Contact Dermatitis 2004, 51, 316–317;
- 123dA. Goossens, N. Cattaert, B. Nemery, L. Boey, E. De Graef, Contact Dermatitis 2011, 64, 158–161.
- 124G. Warren, E. Abbott, P. Schultz, K. Bennett, S. Rogers, Mutat. Res. 1981, 88, 165–173.
- 125N. Katsaros, A. Anagnostopoulou, Crit. Rev. Oncol. Hematol. 2002, 42, 297–308.
- 126A. M. Angeles-Boza, P. M. Bradley, P. K. Fu, S. E. Wicke, J. Bacsa, K. R. Dunbar, C. Turro, Inorg. Chem. 2004, 43, 8510–8519.
- 127M. L. B. Carneiro, C. A. P. Lopes, A. L. Miranda-Vilela, G. A. Joanitti, I. C. R. da Silva, M. R. Mortari, A. R. de Souza, S. N. Báo, Toxicol. Rep. 2015, 2, 1086–1100.