The Cation–π Interaction in Small-Molecule Catalysis
C. Rose Kennedy
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Song Lin
Department of Chemistry, University of California, Berkeley, 535 Latimer Hall, Berkeley, CA, 94720 USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Eric N. Jacobsen
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138 USA
Search for more papers by this authorC. Rose Kennedy
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Song Lin
Department of Chemistry, University of California, Berkeley, 535 Latimer Hall, Berkeley, CA, 94720 USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Eric N. Jacobsen
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138 USA
Search for more papers by this authorGraphical Abstract
Positive effects: This Review discusses the burgeoning role of the cation–π interaction in the small-molecule catalysis of organic and organometallic reactions. An extensive survey of the state-of-the-art research emphasizes how unexpected discoveries and systematic mechanistic studies have begun to enable rational applications of the cation–π interaction in catalyst design.
Abstract
Catalysis by small molecules (≤1000 Da, 10−9 m) that are capable of binding and activating substrates through attractive, noncovalent interactions has emerged as an important approach in organic and organometallic chemistry. While the canonical noncovalent interactions, including hydrogen bonding, ion pairing, and π stacking, have become mainstays of catalyst design, the cation–π interaction has been comparatively underutilized in this context since its discovery in the 1980s. However, like a hydrogen bond, the cation–π interaction exhibits a typical binding affinity of several kcal mol−1 with substantial directionality. These properties render it attractive as a design element for the development of small-molecule catalysts, and in recent years, the catalysis community has begun to take advantage of these features, drawing inspiration from pioneering research in molecular recognition and structural biology. This Review surveys the burgeoning application of the cation–π interaction in catalysis.
References
- 1
- 1aD. A. Dougherty, Science 1996, 271, 163–168;
- 1bJ. C. Ma, D. A. Dougherty, Chem. Rev. 1997, 97, 1303–1324;
- 1cD. A. Dougherty, Acc. Chem. Res. 2013, 46, 885–893.
- 2
- 2aJ. Sunner, K. Nishizawa, P. Kebarle, J. Phys. Chem. 1981, 85, 1814–1820;
- 2bM. Meot-Ner, C. A. Deakyne, J. Am. Chem. Soc. 1985, 107, 474–479;
- 2cB. C. Guo, J. W. Purnell, A. W. Castleman, Chem. Phys. Lett. 1990, 168, 155–160.
- 3
- 3aFor a review on studies of cation–π interactions with computational methods, see: R. K. Raju, J. W. G. Bloom, Y. An, S. E. Wheeler, ChemPhysChem 2011, 12, 3116–3130; for a review on studies of cation–π interactions in structural biology, see:
- 3bJ. P. Gallivan, D. A. Dougherty, Proc. Natl. Acad. Sci. USA 1999, 96, 9459–9464; for a review on the use of double-mutant cycles to dissect contributions from multiple noncovalent interactions, including cation–π interactions, see:
- 3cS. L. Cockroft, C. A. Hunter, Chem. Soc. Rev. 2007, 36, 172–188.
- 4O. M. Cabarcos, C. J. Weinheimer, J. M. Lisy, J. Chem. Phys. 1998, 108, 5151–5154.
- 5For early studies of cation–π interactions in aqueous media, see:
- 5aT. J. Shepodd, M. A. Petti, D. A. Dougherty, J. Am. Chem. Soc. 1988, 110, 1983–1985;
- 5bH.-J. Schneider, Angew. Chem. Int. Ed. Engl. 1991, 30, 1417–1436; Angew. Chem. 1991, 103, 1419–1439;
- 5cM. Dhaenens, L. Lacombe, J.-M. Lehn, J.-P. Vigneron, J. Chem. Soc. Chem. Commun. 1984, 1097–1099;
- 5dJ. Canceill, L. Lacombe, A. Collet, J. Chem. Soc. Chem. Commun. 1987, 219–221;
- 5eK. Araki, H. Shimizu, S. Shinkai, Chem. Lett. 1993, 22, 205–208;
- 5fA. W. Schwabacher, S. Zhang, W. Davy, J. Am. Chem. Soc. 1993, 115, 6995–6996;
- 5gJ. M. Harrowfield, M. I. Ogden, W. R. Richmond, B. W. Skelton, A. H. White, J. Chem. Soc. Perkin Trans. 2 1993, 2183–2190; for early studies of cation–π interactions in organic solvents, see:
- 5hD. A. Stauffer, D. A. Dougherty, Tetrahedron Lett. 1988, 29, 6039–6042;
- 5iB. Odell, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, D. J. Williams, Angew. Chem. Int. Ed. Engl. 1988, 27, 1547–1550; Angew. Chem. 1988, 100, 1605–1608;
- 5jA. Cattani, A. Dalla Cort, L. Mandolini, J. Org. Chem. 1995, 60, 8313–8314.
- 6J. P. Gallivan, D. A. Dougherty, J. Am. Chem. Soc. 2000, 122, 870–874.
- 7For discussion of the electrostatic component of the cation-π interaction, see:
- 7aS. Mecozzi, A. P. West, D. A. Dougherty, J. Am. Chem. Soc. 1996, 118, 2307–2308;
- 7bS. E. Wheeler, Acc. Chem. Res. 2013, 46, 1029–1038;
- 7cE. Jiménez-Moreno, A. M. Gómez, A. Bastida, F. Corzana, G. Jiménez-Oses, J. Jiménez-Barbero, J. L. Asensio, Angew. Chem. Int. Ed. 2015, 54, 4344–4348; Angew. Chem. 2015, 127, 4418–4422.
- 8For select examples documenting the importance of polarizability in the cation–π interaction, see:
- 8aA. McCurdy, L. Jimenez, D. A. Stauffer, D. A. Dougherty, J. Am. Chem. Soc. 1992, 114, 10314–10321;
- 8bS. M. Ngola, D. A. Dougherty, J. Org. Chem. 1996, 61, 4355–4360;
- 8cA. J. Kennan, H. W. Whitlock, J. Am. Chem. Soc. 1996, 118, 3027–3028;
- 8dE. Cubero, F. J. Luque, M. Orozco, Proc. Natl. Acad. Sci. USA 1998, 95, 5976–5980; for a discussion of the role of polarizability in the cation–π interaction, see:
- 8eS. Tsuzuki, M. Mikami, S. Yamada, J. Am. Chem. Soc. 2007, 129, 8656–8662;
- 8fD. Vijay, G. N. Sastry, Phys. Chem. Chem. Phys. 2008, 10, 582–590;
- 8gJ. Hwang, B. E. Dial, P. Li, M. E. Kozik, M. D. Smith, K. D. Shimizu, Chem. Sci. 2015, 6, 4358–4364; for a discussion of the role of charge transfer in the cation–π interaction, see:
- 8hJ. W. Caldwell, P. A. Kollman, J. Am. Chem. Soc. 1995, 117, 4177–4178;
- 8iC. Garau, A. Frontera, D. Quiñonero, P. Ballester, A. Costa, P. M. Deyà, J. Phys. Chem. A 2004, 108, 9423–9427.
- 9
- 9aB. P. Hay, R. Custelcean, Cryst. Growth Des. 2009, 9, 2539–2545;
- 9bC. Estarellas, A. Bauzá, A. Frontera, D. Quiñonero, P. M. Deyà, Phys. Chem. Chem. Phys. 2011, 13, 5696–5702.
- 10N. Zacharias, D. A. Dougherty, Trends Pharmacol. Sci. 2002, 23, 281–287.
- 11For a review, see:
- 11aS. K. Burley, G. A. Petsko, FEBS Lett. 1986, 203, 139–143; for select examples, see:
- 11bL. Brocchieri, S. Karlin, Proc. Natl. Acad. Sci. USA 1994, 91, 9297–9301;
- 11cS. Karlin, M. Zuker, L. Brocchieri, J. Mol. Biol. 1994, 239, 227–248;
- 11dC. L. Nandi, J. Singh, J. M. Thornton, Protein Eng. 1993, 6, 247–259;
- 11eA. M. de Vos, M. Ultsch, A. A. Kossiakoff, Science 1992, 255, 306–312.
- 12For examples, see:
- 12aM. Harel, I. Schalk, L. Ehret-Sabatier, F. Bouet, M. Goeldner, C. Hirth, P. H. Axelsen, I. Silman, J. L. Sussman, Proc. Natl. Acad. Sci. USA 1993, 90, 9031–9035;
- 12bW. Zhong, J. P. Gallivan, Y. Zhang, L. Li, H. A. Lester, D. A. Dougherty, Proc. Natl. Acad. Sci. USA 1998, 95, 12088–12093;
- 12cM. M. Gromiha, C. Santhosh, S. Ahmad, Int. J. Biol. Macromol. 2004, 34, 203–211;
- 12dX. Xiu, N. L. Puskar, J. A. P. Shanata, H. A. Lester, D. A. Dougherty, Nature 2009, 458, 534–537;
- 12eD. Wu, Q. Hu, Z. Yan, W. Chen, C. Yan, X. Huang, J. Zhang, P. Yang, H. Deng, J. Wang, X. Deng, Y. Shi, Nature 2012, 484, 214–219.
- 13For examples, see:
- 13aK. Poralla, A. Hewelt, G. D. Prestwich, I. Abe, I. Reipen, G. Sprenger, Trends Biochem. Sci. 1994, 19, 157–158;
- 13bZ. Shi, C. J. Buntel, J. H. Griffin, Proc. Natl. Acad. Sci. USA 1994, 91, 7370–7374;
- 13cK. U. Wendt, K. Poralla, G. E. Schulz, Science 1997, 277, 1811–1815;
- 13dG. Schluckebier, J. Labahn, J. Granzin, W. Saenger, Biol. Chem. 1998, 379, 389–400;
- 13eD. J. Reinert, G. Balliano, G. E. Schulz, Chem. Biol. 2004, 11, 121–126;
- 13fY. J. Hong, D. J. Tantillo, Org. Lett. 2015, 17, 5388–5391.
- 14L. M. Salonen, M. Ellermann, F. Diederich, Angew. Chem. Int. Ed. 2011, 50, 4808–4842; Angew. Chem. 2011, 123, 4908–4944.
- 15For examples, see:
- 15aT. J. Shepodd, M. A. Petti, D. A. Dougherty, J. Am. Chem. Soc. 1986, 108, 6085–6087;
- 15bH.-J. Schneider, T. Blatter, P. Zimmermann, Angew. Chem. Int. Ed. Engl. 1990, 29, 1161–1162; Angew. Chem. 1990, 102, 1194–1195;
- 15cJ.-M. Lehn, R. Méric, J.-P. Vigneron, M. Cesario, J. Guilhem, C. Pascard, Z. Asfari, J. Vicens, Supramol. Chem. 1995, 5, 97–103;
- 15dR. A. Bissell, E. Cordova, A. E. Kaifer, J. F. Stoddart, Nature 1994, 369, 133–137.
- 16G. V. Janjić, S. D. Zarić in The Importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering (Eds.: ), Wiley, New Delhi, India, 2012.
- 17For an example, see: B. H. Hong, S. C. Bae, C.-W. Lee, S. Jeong, K. S. Kim, Science 2001, 294, 348–351.
- 18For a recent review, see: A. S. Mahadevi, G. N. Sastry, Chem. Rev. 2013, 113, 2100–2138.
- 19For select examples, see:
- 19aA. Fürstner, Chem. Soc. Rev. 2009, 38, 3208–3221;
- 19bA. Fürstner, Acc. Chem. Res. 2014, 47, 925–938;
- 19cK. Ishihara, M. Fushimi, M. Akakura, Acc. Chem. Res. 2007, 40, 1049–1055.
- 20For an example, see: K. Aoki, K. Murayama, H. Nishiyama, J. Chem. Soc. Chem. Commun. 1995, 2221–2222.
- 21For examples, see:
- 21aS. Yamada, Y. Tokugawa, J. Am. Chem. Soc. 2009, 131, 2098–2099;
- 21bS. Yamada, C. Kawamura, Org. Lett. 2012, 14, 1572–1575;
- 21cS. Yamada, Y. Tokugawa, Y. Nojiri, E. Takamori, Chem. Commun. 2012, 48, 1763–1765.
- 22
- 22aA. Greenberg, Mol. Struct. Energ. 1988, 7, 139–178;
- 22bA. Greenberg in The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science (Eds.: ), Wiley, New York, 2000, pp. 47–84.
- 23
- 23aL. Yao, J. Aubé, J. Am. Chem. Soc. 2007, 129, 2766–2767;
- 23bM. Szostak, L. Yao, J. Aubé, Org. Lett. 2009, 11, 4386–4389;
- 23cM. Szostak, L. Yao, J. Aubé, J. Org. Chem. 2010, 75, 1235–1243.
- 24O. Gutierrez, J. Aubé, D. J. Tantillo, J. Org. Chem. 2012, 77, 640–647.
- 25C. E. Katz, T. Ribelin, D. Withrow, Y. Basseri, A. K. Manukyan, A. Bermudez, C. G. Nuera, V. W. Day, D. R. Powell, J. L. Poutsma, J. Aubé, J. Org. Chem. 2008, 73, 3318–3327.
- 26
- 26aH. M. R. Hoffmann, Angew. Chem. Int. Ed. Engl. 1984, 23, 1–19; Angew. Chem. 1984, 96, 29–48;
- 26bD. H. Murray, K. F. Albizati, Tetrahedron Lett. 1990, 31, 4109–4112;
- 26cM. Harmata, P. Rashatasakhon, Tetrahedron 2003, 59, 2371–2395.
- 27
- 27aC. B. W. Stark, U. Eggert, H. M. R. Hoffmann, Angew. Chem. Int. Ed. 1998, 37, 1266–1268; Angew. Chem. 1998, 110, 1337–1339;
- 27bC. B. W. Stark, S. Pierau, R. Wartchow, H. M. R. Hoffmann, Chem. Eur. J. 2000, 6, 684–691.
- 28
- 28aE. H. Krenske, K. N. Houk, M. Harmata, Org. Lett. 2010, 12, 444–447;
- 28bE. H. Krenske, K. N. Houk, Acc. Chem. Res. 2013, 46, 979–989.
- 29
- 29aK. Conde-Frieboes, D. Hoppe, Synlett 1990, 99–102;
- 29bA. Bernardi, S. Cardani, O. Carugo, L. Colombo, C. Scolastico, R. Villa, Tetrahedron Lett. 1990, 31, 2779–2782;
- 29cC. Palazzi, G. Poli, C. Scolastico, R. Villa, Tetrahedron Lett. 1990, 31, 4223–4226;
- 29dA. Bernardi, M. Cavicchioli, G. Poli, C. Scolastico, A. Sidjimov, Tetrahedron 1991, 47, 7925–7936;
- 29eK. Conde-Frieboes, D. Hoppe, Tetrahedron 1992, 48, 6011–6020;
- 29fE. Winter, D. Hoppe, Tetrahedron 1998, 54, 10329–10338;
- 29gF. Steif, B. Wibbeling, O. Meyer, D. Hoppe, Synthesis 2000, 2000, 743–753;
- 29hM. Brüggemann, C. Holst, D. Hoppe, Eur. J. Org. Chem. 2001, 2001, 647–654.
- 30E. H. Krenske, Org. Lett. 2011, 13, 6572–6575.
- 31S. Yamada, Org. Biomol. Chem. 2007, 5, 2903–2912.
- 32S. M. Mennen, J. T. Blank, M. B. Tran-Dubé, J. E. Imbriglio, S. J. Miller, Chem. Commun. 2005, 195–197.
- 33
- 33aC. Uyeda, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 9228–9229;
- 33bC. Uyeda, A. R. Rötheli, E. N. Jacobsen, Angew. Chem. Int. Ed. 2010, 49, 9753–9756; Angew. Chem. 2010, 122, 9947–9950;
- 33cC. Uyeda, E. N. Jacobsen, J. Am. Chem. Soc. 2011, 133, 5062–5075.
- 34K. Murakami, Y. Sasano, M. Tomizawa, M. Shibuya, E. Kwon, Y. Iwabuchi, J. Am. Chem. Soc. 2014, 136, 17591–17600.
- 35
- 35aM. Shibuya, M. Tomizawa, I. Suzuki, Y. Iwabuchi, J. Am. Chem. Soc. 2006, 128, 8412–8413;
- 35bM. Tomizawa, M. Shibuya, Y. Iwabuchi, Org. Lett. 2009, 11, 1829–1831;
- 35cM. Tomizawa, M. Shibuya, Y. Iwabuchi, Org. Lett. 2014, 16, 4968;
- 35dY. Sasano, K. Murakami, T. Nishiyama, E. Kwon, Y. Iwabuchi, Angew. Chem. Int. Ed. 2013, 52, 12624–12627; Angew. Chem. 2013, 125, 12856–12859;
- 35eY. Iwabuchi, Chem. Pharm. Bull. 2013, 61, 1197–1213.
- 36
- 36aG. C. Fu, Acc. Chem. Res. 2000, 33, 412–420;
- 36bG. C. Fu, Acc. Chem. Res. 2004, 37, 542–547;
- 36cR. P. Wurz, Chem. Rev. 2007, 107, 5570–5595.
- 37
- 37aS. J. Miller, G. T. Copeland, N. Papaioannou, T. E. Horstmann, E. M. Ruel, J. Am. Chem. Soc. 1998, 120, 1629–1630;
- 37bS. J. Miller, Acc. Chem. Res. 2004, 37, 601–610.
- 38T. Kawabata, M. Nagato, K. Takasu, K. Fuji, J. Am. Chem. Soc. 1997, 119, 3169–3170.
- 39
- 39aS. Yamada, T. Misono, Y. Iwai, Tetrahedron Lett. 2005, 46, 2239–2242;
- 39bS. Yamada, T. Misono, Y. Iwai, A. Masumizu, Y. Akiyama, J. Org. Chem. 2006, 71, 6872–6880.
- 40S. Yamada, T. Misono, S. Tsuzuki, J. Am. Chem. Soc. 2004, 126, 9862–9872.
- 41Y. Wei, I. Held, H. Zipse, Org. Biomol. Chem. 2006, 4, 4223–4230.
- 42S. Yamada, K. Yamashita, Tetrahedron Lett. 2008, 49, 32–35.
- 43S. Yamada, J. Yamamoto, E. Ohta, Tetrahedron Lett. 2007, 48, 855–858.
- 44
- 44aG. Lelais, D. W. C. MacMillan, Aldrichimica Acta 2006, 39, 79–87;
- 44bB. List, Chem. Rev. 2007, 107, 5413–5415;
- 44cA. Erkkilä, I. Majander, P. M. Pihko, Chem. Rev. 2007, 107, 5416–5470;
- 44dD. W. C. MacMillan, Nature 2008, 455, 304–308.
- 45
- 45aN. A. Paras, D. W. C. MacMillan, J. Am. Chem. Soc. 2001, 123, 4370–4371;
- 45bJ. F. Austin, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 1172–1173.
- 46
- 46aR. Gordillo, J. Carter, K. Houk, Adv. Synth. Catal. 2004, 346, 1175–1185;
- 46bR. Gordillo, K. N. Houk, J. Am. Chem. Soc. 2006, 128, 3543–3553;
- 46cC. Allemann, R. Gordillo, F. R. Clemente, P. H.-Y. Cheong, K. N. Houk, Acc. Chem. Res. 2004, 37, 558–569.
- 47Y. Mori, S. Yamada, Molecules 2012, 17, 2161–2168.
- 48
- 48aN. Halland, R. G. Hazell, K. A. Jørgensen, J. Org. Chem. 2002, 67, 8331–8338;
- 48bN. Halland, P. S. Aburel, K. A. Jørgensen, Angew. Chem. Int. Ed. 2003, 42, 661–665; Angew. Chem. 2003, 115, 685–689;
- 48cA. Prieto, N. Halland, K. A. Jørgensen, Org. Lett. 2005, 7, 3897–3900.
- 49
- 49aM. C. Holland, S. Paul, W. B. Schweizer, K. Bergander, C. Mück-Lichtenfeld, S. Lakhdar, H. Mayr, R. Gilmour, Angew. Chem. Int. Ed. 2013, 52, 7967–7971; Angew. Chem. 2013, 125, 8125–8129;
- 49bM. C. Holland, J. B. Metternich, C. Mück-Lichtenfeld, R. Gilmour, Chem. Commun. 2015, 51, 5322–5325;
- 49cM. C. Holland, J. B. Metternich, C. Daniliuc, W. B. Schweizer, R. Gilmour, Chem. Eur. J. 2015, 21, 10031–10038.
- 50M. Harmata, S. K. Ghosh, X. Hong, S. Wacharasindhu, P. Kirchhoefer, J. Am. Chem. Soc. 2003, 125, 2058–2059.
- 51
- 51aJ. Wang, S.-G. Chen, B.-F. Sun, G.-Q. Lin, Y.-J. Shang, Chem. Eur. J. 2013, 19, 2539–2547;
- 51bK. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243–4244;
- 51cA. B. Northrup, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 2458–2460;
- 51dS. P. Brown, N. C. Goodwin, D. W. C. MacMillan, J. Am. Chem. Soc. 2003, 125, 1192–1194.
- 52E. H. Krenske, K. N. Houk, M. Harmata, J. Org. Chem. 2015, 80, 744–750.
- 53G. S. Hammond, P. Wyatt, C. D. DeBoer, N. J. Turro, J. Am. Chem. Soc. 1964, 86, 2532–2533.
- 54P. Lakshminarasimhan, R. B. Sunoj, J. Chandrasekhar, V. Ramamurthy, J. Am. Chem. Soc. 2000, 122, 4815–4816.
- 55
- 55aG. Illuminati, L. Mandolini, Acc. Chem. Res. 1981, 14, 95–102;
- 55bC. Galli, L. Mandolini, Eur. J. Org. Chem. 2000, 3117–3125;
- 55cV. Martí-Centelles, M. D. Pandey, M. I. Burguete, S. V. Luis, Chem. Rev. 2015, 115, 8736–8834.
- 56P. Bolduc, A. Jacques, S. K. Collins, J. Am. Chem. Soc. 2010, 132, 12790–12791.
- 57
- 57aG. R. L. Cousins, R. L. E. Furlan, Y.-F. Ng, J. E. Redman, J. K. M. Sanders, Angew. Chem. Int. Ed. 2001, 40, 423–428; Angew. Chem. 2001, 113, 437–442;
- 57bP. Corbett, J. Sanders, S. Otto, Chem. Eur. J. 2008, 14, 2153–2166.
- 58S. Yamada, A. Iwaoka, Y. Fujita, S. Tsuzuki, Org. Lett. 2013, 15, 5994–5997.
- 59
- 59aJ. E. Baldwin, J. Chem. Soc. Chem. Commun. 1976, 734–736;
- 59bI. V. Alabugin, K. Gilmore, Chem. Commun. 2013, 49, 11246–11250.
- 60
- 60aJ. E. Baldwin, J. Cutting, W. Dupont, L. Kruse, L. Silberman, R. C. Thomas, J. Chem. Soc. Chem. Commun. 1976, 736–738;
- 60bJ. E. Baldwin, L. I. Kruse, J. Chem. Soc. Chem. Commun. 1977, 233–235.
- 61C. P. Johnston, A. Kothari, T. Sergeieva, S. I. Okovytyy, K. E. Jackson, R. S. Paton, M. D. Smith, Nat. Chem. 2015, 7, 171–177.
- 62
- 62aV. B. Birman, E. W. Uffman, H. Jiang, X. Li, C. J. Kilbane, J. Am. Chem. Soc. 2004, 126, 12226–12227;
- 62bV. B. Birman, H. Jiang, Org. Lett. 2005, 7, 3445–3447;
- 62cV. B. Birman, L. Guo, Org. Lett. 2006, 8, 4859–4861;
- 62dV. B. Birman, X. Li, Org. Lett. 2006, 8, 1351–1354;
- 62eV. B. Birman, X. Li, Org. Lett. 2008, 10, 1115–1118.
- 63V. B. Birman, H. Jiang, X. Li, L. Guo, E. W. Uffman, J. Am. Chem. Soc. 2006, 128, 6536–6537.
- 64X. Yang, V. D. Bumbu, P. Liu, X. Li, H. Jiang, E. W. Uffman, L. Guo, W. Zhang, X. Jiang, K. N. Houk, V. B. Birman, J. Am. Chem. Soc. 2012, 134, 17605–17612.
- 65X. Yang, G. Lu, V. B. Birman, Org. Lett. 2010, 12, 892–895.
- 66X. Li, P. Liu, K. N. Houk, V. B. Birman, J. Am. Chem. Soc. 2008, 130, 13836–13837.
- 67P. Liu, X. Yang, V. B. Birman, K. N. Houk, Org. Lett. 2012, 14, 3288–3291.
- 68B. Hu, M. Meng, Z. Wang, W. Du, J. S. Fossey, X. Hu, W.-P. Deng, J. Am. Chem. Soc. 2010, 132, 17041–17044.
- 69R. Kluger, G. Ikeda, Q. Hu, P. Cao, J. Drewry, J. Am. Chem. Soc. 2006, 128, 15856–15864.
- 70O. M. Gonzalez-James, D. A. Singleton, J. Am. Chem. Soc. 2010, 132, 6896–6897.
- 71
- 71aM. A. Petti, T. J. Shepodd, D. A. Dougherty, Tetrahedron Lett. 1986, 27, 807–810;
- 71bF. Diederich, K. Dick, J. Am. Chem. Soc. 1984, 106, 8024–8036.
- 72D. A. Stauffer, R. E. Barrans, D. A. Dougherty, Angew. Chem. Int. Ed. Engl. 1990, 29, 915–918; Angew. Chem. 1990, 102, 953–956.
- 73P. K. Chiang, R. K. Gordon, J. Tal, G. C. Zeng, B. P. Doctor, K. Pardhasaradhi, P. P. McCann, FASEB J. 1996, 10, 471–480.
- 74
- 74aP. W. N. M. Van Leeuwen, Z. Freixa in Supramolecular Catalysis: Refocusing Catalysis (Ed.: ), Wiley-VCH, Weiheim, 2008, Chapter 10, pp. 255–299;
- 74bJ. Rebek, Jr., Acc. Chem. Res. 2009, 42, 1660–1668;
- 74cM. Yoshizawa, J. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 2009, 48, 3418–3438; Angew. Chem. 2009, 121, 3470–3490;
- 74dB. Breiner, J. K. Clegg, J. R. Nitschke, Chem. Sci. 2011, 2, 51–56;
- 74eM. Raynal, P. Ballester, A. Vidal-Ferran, P. W. N. M. van Leeuwen, Chem. Soc. Rev. 2014, 43, 1660–1733;
- 74fC. M. A. Gangemi, A. Pappalardo, G. Trusso Sfrazzetto, RSC Adv. 2015, 5, 51919–51933;
- 74gC. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115, 3012–3035.
- 75D. L. Caulder, R. E. Powers, T. N. Parac, K. N. Raymond, Angew. Chem. Int. Ed. 1998, 37, 1840–1843; Angew. Chem. 1998, 110, 1940–1943.
- 76
- 76aT. N. Parac, D. L. Caulder, K. N. Raymond, J. Am. Chem. Soc. 1998, 120, 8003–8004;
- 76bV. M. Dong, D. Fiedler, B. Carl, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2006, 128, 14464–14465;
- 76cA. V. Davis, D. Fiedler, G. Seeber, A. Zahl, R. van Eldik, K. N. Raymond, J. Am. Chem. Soc. 2006, 128, 1324–1333;
- 76dM. D. Pluth, K. N. Raymond, Chem. Soc. Rev. 2007, 36, 161–171.
- 77M. D. Pluth, D. W. Johnson, G. Szigethy, A. V. Davis, S. J. Teat, A. G. Oliver, R. G. Bergman, K. N. Raymond, Inorg. Chem. 2009, 48, 111–120.
- 78J. S. Mugridge, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2012, 134, 2057–2066.
- 79L. R. MacGillivray, J. L. Atwood, Nature 1997, 389, 469–472.
- 80
- 80aA. Shivanyuk, J. Rebek, Jr., Proc. Natl. Acad. Sci. USA 2001, 98, 7662–7665;
- 80bL. Avram, Y. Cohen, J. Am. Chem. Soc. 2002, 124, 15148–15149;
- 80cM. Yamanaka, A. Shivnyuk, J. Rebek, Jr., J. Am. Chem. Soc. 2004, 126, 2939–2943.
- 81Q. Zhang, K. Tiefenbacher, J. Am. Chem. Soc. 2013, 135, 16213–16219.
- 82
- 82aM. D. Pluth, R. G. Bergman, K. N. Raymond, Science 2007, 316, 85–88;
- 82bM. D. Pluth, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2008, 130, 11423–11429;
- 82cM. D. Pluth, R. G. Bergman, K. N. Raymond, Angew. Chem. Int. Ed. 2007, 46, 8587–8589; Angew. Chem. 2007, 119, 8741–8743;
- 82dM. D. Pluth, R. G. Bergman, K. N. Raymond, J. Org. Chem. 2009, 74, 58–63.
- 83G. Bianchini, G. La Sorella, N. Canever, A. Scarso, G. Strukul, Chem. Commun. 2013, 49, 5322–5324.
- 84C. Zhao, F. D. Toste, K. N. Raymond, R. G. Bergman, J. Am. Chem. Soc. 2014, 136, 14409–14412.
- 85
- 85aW. M. Hart-Cooper, K. N. Clary, F. D. Toste, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2012, 134, 17873–17876;
- 85bC. Zhao, Q.-F. Sun, W. M. Hart-Cooper, A. G. DiPasquale, F. D. Toste, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2013, 135, 18802–18805;
- 85cW. M. Hart-Cooper, C. Zhao, R. M. Triano, P. Yaghoubi, H. L. Ozores, K. N. Burford, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Sci. 2015, 6, 1383–1393;
- 85dD. M. Kaphan, F. D. Toste, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2015, 137, 9202–9205.
- 86Q. Zhang, K. Tiefenbacher, Nat. Chem. 2015, 7, 197–202.
- 87
- 87aC. M. Starks, K. Back, J. Chappell, J. P. Noel, Science 1997, 277, 1815–1820;
- 87bC. A. Lesburg, G. Zhai, D. E. Cane, D. W. Christianson, Science 1997, 277, 1820–1824.
- 88For reviews, see:
- 88aS. H. A. M. Leenders, R. Gramage-Doria, B. de Bruin, J. N. H. Reek, Chem. Soc. Rev. 2015, 44, 433–448;
- 88bD. Fiedler, D. H. Leung, R. G. Bergman, K. N. Raymond, Acc. Chem. Res. 2005, 38, 349–358; for examples, see:
- 88cD. H. Leung, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2007, 129, 2746–2747;
- 88dC. J. Brown, G. M. Miller, M. W. Johnson, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2011, 133, 11964–11966;
- 88eZ. J. Wang, C. J. Brown, R. G. Bergman, K. N. Raymond, F. D. Toste, J. Am. Chem. Soc. 2011, 133, 7358–7360;
- 88fZ. J. Wang, K. N. Clary, R. G. Bergman, K. N. Raymond, F. D. Toste, Nat. Chem. 2013, 5, 100–103;
- 88gD. M. Kaphan, M. D. Levin, R. G. Bergman, K. N. Raymond, F. D. Toste, Science 2015, 350, 1235–1238.
- 89
- 89aT. Ohkuma, H. Ooka, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1995, 117, 2675–2676;
- 89bT. Ohkuma, H. Ooka, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1995, 117, 10417–10418;
- 89cT. Ohkuma, H. Ooka, M. Yamakawa, T. Ikariya, R. Noyori, J. Org. Chem. 1996, 61, 4872–4873;
- 89dT. Ohkuma, H. Ikehira, T. Ikariya, R. Noyori, Synlett 1997, 1997, 467–468;
- 89eH. Doucet, T. Ohkuma, K. Murata, T. Yokozawa, M. Kozawa, E. Katayama, A. F. England, T. Ikariya, R. Noyori, Angew. Chem. Int. Ed. 1998, 37, 1703–1707; Angew. Chem. 1998, 110, 1792–1796;
- 89fT. Ohkuma, H. Doucet, T. Pham, K. Mikami, T. Korenaga, M. Terada, R. Noyori, J. Am. Chem. Soc. 1998, 120, 1086–1087;
- 89gT. Ohkuma, M. Koizumi, H. Doucet, T. Pham, M. Kozawa, K. Murata, E. Katayama, T. Yokozawa, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1998, 120, 13529–13530.
- 90R. Hartmann, P. Chen, Angew. Chem. Int. Ed. 2001, 40, 3581–3585; Angew. Chem. 2001, 113, 3693–3697.
- 91P. A. Dub, N. J. Henson, R. L. Martin, J. C. Gordon, J. Am. Chem. Soc. 2014, 136, 3505–3521.
- 92K. Frisch, A. Landa, S. Saaby, K. A. Jørgensen, Angew. Chem. Int. Ed. 2005, 44, 6058–6063; Angew. Chem. 2005, 117, 6212–6217.
- 93
- 93aM. Rueping, U. Uria, M.-Y. Lin, I. Atodiresei, J. Am. Chem. Soc. 2011, 133, 3732–3735;
- 93bD. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114, 9047–9153.
- 94
- 94aA. Lee, J. D. Stewart, J. Clardy, B. Ganem, Chem. Biol. 1995, 2, 195–203;
- 94bA. Y. Lee, P. A. Karplus, B. Ganem, J. Clardy, J. Am. Chem. Soc. 1995, 117, 3627–3628;
- 94cB. Ganem, Angew. Chem. Int. Ed. Engl. 1996, 35, 936–945; Angew. Chem. 1996, 108, 1014–1023.
- 95Y. M. Chook, H. Ke, W. N. Lipscomb, Proc. Natl. Acad. Sci. USA 1993, 90, 8600–8603.
- 96
- 96aR. R. Knowles, E. N. Jacobsen, Proc. Natl. Acad. Sci. USA 2010, 107, 20678–20685;
- 96bR. R. Knowles, E. N. Jacobsen, unpublished results.
- 97S. E. Reisman, A. G. Doyle, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 7198–7199.
- 98R. R. Knowles, S. Lin, E. N. Jacobsen, J. Am. Chem. Soc. 2010, 132, 5030–5032.
- 99S. Lin, E. N. Jacobsen, Nat. Chem. 2012, 4, 817–824.
- 100S. Lin, PhD Thesis, Harvard University (USA), 2013.
- 101
- 101aE. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498–6506;
- 101bJ. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan, W. Yang, J. Chem. Theory Comput. 2011, 7, 625–632.
- 102G. Bergonzini, C. S. Schindler, C.-J. Wallentin, E. N. Jacobsen, C. R. J. Stephenson, Chem. Sci. 2014, 5, 112–116.
- 103J. A. Birrell, J.-N. Desrosiers, E. N. Jacobsen, J. Am. Chem. Soc. 2011, 133, 13872–13875.
- 104C. S. Yeung, R. E. Ziegler, J. A. Porco, E. N. Jacobsen, J. Am. Chem. Soc. 2014, 136, 13614–13617.
- 105A. R. Brown, C. Uyeda, C. A. Brotherton, E. N. Jacobsen, J. Am. Chem. Soc. 2013, 135, 6747–6749.
- 106R. Y. Liu, M. Wasa, E. N. Jacobsen, Tetrahedron Lett. 2015, 56, 3428–3430.
- 107H. Zhang, S. Lin, E. N. Jacobsen, J. Am. Chem. Soc. 2014, 136, 16485–16488.
Citing Literature
October 4, 2016
Pages 12596-12624