Carbon-Monoxide-Releasing Molecules for the Delivery of Therapeutic CO In Vivo
Dr. Sandra García-Gallego
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge (UK)
Present Address: Polymer and Fibre Technology, KTH Royal Institute of Technology, 100 44 Stockholm (Sweden)
Search for more papers by this authorCorresponding Author
Dr. Gonçalo J. L. Bernardes
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge (UK)
Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa (Portugal) http://gbernardes-lab.com
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge (UK)Search for more papers by this authorDr. Sandra García-Gallego
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge (UK)
Present Address: Polymer and Fibre Technology, KTH Royal Institute of Technology, 100 44 Stockholm (Sweden)
Search for more papers by this authorCorresponding Author
Dr. Gonçalo J. L. Bernardes
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge (UK)
Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa (Portugal) http://gbernardes-lab.com
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge (UK)Search for more papers by this authorGraphical Abstract
On target: Carbon-monoxide-releasing molecules (CORMs) are promising agents for the treatment of several diseases. CORMs are particularly good for enabling CO delivery in a controlled manner without affecting oxygen transport by hemoglobin. Significant progress in the methods for CO detection in live cells and the understanding of the reactivity of CORMs in vivo provides insights into CO biology and the design of safer, and more selective and efficient CORMs for clinical use.
Abstract
The development of carbon-monoxide-releasing molecules (CORMs) as pharmaceutical agents represents an attractive and safer alternative to administration of gaseous CO. Most CORMs developed to date are transition-metal carbonyl complexes. Although such CORMs have showed promising results in the treatment of a number of animal models of disease, they still lack the necessary attributes for clinical development. Described in this Minireview are the methods used for CORM selection, to date, and how new insights into the reactivity of metal-carbonyl complexes in vivo, together with advances in methods for live-cell CO detection, are driving the design and synthesis of new CORMs, CORMs that will enable controlled CO release in vivo in a spatial and temporal manner without affecting oxygen transport by hemoglobin.
References
- 1R. Motterlini, L. E. Otterbein, Nat. Rev. Drug Discov. 2010, 9, 728–743.
- 2T. R. Johnson, B. E. Mann, J. E. Clark, R. Foresti, C. J. Green, R. Motterlini, Angew. Chem. 2003, 115, 3850–3858;
10.1002/ange.200301634 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 3722–3729.
- 3R. Motterlini, J. E. Clark, R. Foresti, P. Sarathchandra, B. E. Mann, C. J. Green, Circ. Res. 2002, 90, 17e–24e.
- 4B. E. Mann, Top. Organomet. Chem. 2010, 32, 247–285.
- 5R. Motterlini, P. Sawle, J. Hammad, S. Bains, R. Alberto, R. Foresti, C. J. Green, FASEB J. 2005, 19, 284–286.
- 6T. S. Pitchumony, B. Spingler, R. Motterlini, R. Alberto, Org. Biomol. Chem. 2010, 8, 4849–4854.
- 7F. Zobi, Future Med. Chem. 2013, 5, 175–188.
- 8M. Desmard, R. Foresti, D. Morin, M. Dagouassat, M. Dagoussat, A. Berdeaux, E. Denamur, S. H. Crook, B. E. Mann, D. Scapens, P. Montravers, J. Boczkowski, R. Motterlini, Antioxid. Redox Signaling 2012, 16, 153–163.
- 9S. Romanski, B. Kraus, U. Schatzschneider, J.-M. Neudoerfl, S. Amslinger, H.-G. Schmalz, Angew. Chem. 2011, 123, 2440–2444;
10.1002/ange.201006598 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 2392–2396.
- 10S. Romanski, B. Kraus, M. Guttentag, W. Schlundt, H. Rucker, A. Adler, J.-M. Neudorfl, R. Alberto, S. Amslinger, H.-G. Schmalz, Dalton Trans. 2012, 41, 13862–13875.
- 11S. Romanski, E. Stamellou, J. T. Jaraba, D. Storz, B. K. Krämer, M. Hafner, S. Amslinger, H. G. Schmalz, B. A. Yard, Free Radical Biol. Med. 2013, 65, 78–88.
- 12S. Romanski, H. Rücker, E. Stamellou, M. Guttentag, J.-M. Neudörfl, R. Alberto, S. Amslinger, B. Yard, H.-G. Schmalz, Organometallics 2012, 31, 5800–5809.
- 13S. Botov, E. Stamellou, S. Romanski, M. Guttentag, R. Alberto, J.-M. Neudörfl, B. Yard, H.-G. Schmalz, Organometallics 2013, 32, 3587–3594.
- 14R. D. Rimmer, A. E. Pierri, P. C. Ford, Coord. Chem. Rev. 2012, 256, 1509–1519.
- 15U. Schatzschneider, Inorg. Chim. Acta 2011, 374, 19–23.
- 16D. Crespy, K. Landfester, U. S. Schubert, A. Schiller, Chem. Commun. 2010, 46, 6651–6662.
- 17H. Pfeiffer, A. Rojas, J. Niesel, U. Schatzschneider, Dalton Trans. 2009, 4292–4298.
- 18G. Dördelmann, H. Pfeiffer, A. Birkner, U. Schatzschneider, Inorg. Chem. 2011, 50, 4362–4367.
- 19J. E. Clark, P. Naughton, S. Shurey, C. J. Green, T. R. Johnson, B. E. Mann, R. Foresti, R. Motterlini, Circ. Res. 2003, 93, 178.
- 20M. I. Guillén, J. Megías, V. Clérigues, F. Gomar, M. J. Alcaraz, Rheumatology 2008, 47, 1323–1328.
- 21L. S. Nobre, J. D. Seixas, C. C. Romao, L. M. Saraiva, Antimicrob. Agents Chemother. 2007, 51, 4303–4307.
- 22M. G. Bani-Hani, D. Greenstein, B. E. Mann, C. J. Green, R. Motterlini, J. Pharmacol. Exp. Ther. 2006, 318, 1315–1322.
- 23R. Foresti, J. Hammad, J. E. Clark, T. R. Johnson, B. E. Mann, A. Friebe, C. J. Green, R. Motterlini, Br. J. Pharmacol. 2004, 142, 453–460.
- 24S. Chlopicki, R. Olszanecki, E. Marcinkiewicz, M. Lomnicka, R. Motterlini, Cardiovasc. Res. 2006, 71, 393–401.
- 25R. Motterlini, P. Sawle, J. Hammad, S. Bains, R. Alberto, R. Foresti, C. J. Green, FASEB J. 2004, 19, 284–286.
- 26G. L. Bannenberg, H. L. A. Vieira, Expert Opin. Ther. Pat. 2009, 19, 663–682.
- 27T. R. Johnson, B. E. Mann, I. P. Teasdale, H. Adams, R. Foresti, C. J. Green, R. Motterlini, Dalton Trans. 2007, 1500–1508.
- 28T. Santos-Silva, A. Mukhopadhyay, J. D. Seixas, G. J. L. Bernardes, C. C. Romao, M. J. Romao, J. Am. Chem. Soc. 2011, 133, 1192–1195.
- 29T. Santos-Silva, A. Mukhopadhyay, J. D. Seixas, G. J. L. Bernardes, C. C. Romao, M. J. Romao, Curr. Med. Chem. 2011, 18, 3361–3366.
- 30W.-Q. Zhang, A. J. Atkin, R. J. Thatcher, A. C. Whitwood, I. J. S. Fairlamb, J. M. Lynam, Dalton Trans. 2009, 4351–4358.
- 31W.-Q. Zhang, A. C. Whitwood, I. J. S. Fairlamb, J. M. Lynam, Inorg. Chem. 2010, 49, 8941–8952.
- 32F. Zobi, A. Degonda, M. C. Schaub, A. Y. Bogdanova, Inorg. Chem. 2010, 49, 7313–7322.
- 33R. Kretschmer, G. Gessner, H. Görls, S. H. Heinemann, M. Westerhausen, J. Inorg. Biochem. 2011, 105, 6–9.
- 34M. L. Dallas, J. L. Scragg, C. Peers in Arterial Chemoreceptors, Vol. 648 (Eds.: ), Springer, Dordrecht, 2009, pp. 89–95.
- 35H. Song, H. Zhao, Y. Qu, Q. Sun, F. Zhang, Z. Du, W. Liang, Y. Qi, P. Yang, J. Periodontal Res. 2011, 46, 48–57.
- 36M. Desmard, K. S. Davidge, O. Bouvet, D. Morin, D. Roux, R. Foresti, J. D. Ricard, E. Denamur, R. K. Poole, P. Montravers, R. Motterlini, J. Boczkowski, FASEB J. 2009, 23, 1023–1031.
- 37I. C. Winburn, K. Gunatunga, R. D. McKernan, R. J. Walker, I. A. Sammut, J. C. Harrison, Basic Clin. Pharmacol. Toxicol. 2012, 111, 31–41.
- 38J. D. Seixas, A. Mukhopadhyay, T. Santos-Silva, L. E. Otterbein, D. J. Gallo, S. S. Rodrigues, B. H. Guerreiro, A. M. L. Goncalves, N. Penacho, A. R. Marques, A. C. Coelho, P. M. Reis, M. J. Romao, C. C. Romao, Dalton Trans. 2013, 42, 5985–5998.
- 39M. F. A. Santos, J. D. Seixas, A. C. Coelho, A. Mukhopadhyay, P. M. Reis, M. J. Romao, C. C. Romao, T. Santos-Silva, J. Inorg. Biochem. 2012, 117, 285–291.
- 40H.-M. Berends, P. Kurz, Inorg. Chim. Acta 2012, 380, 141–147.
- 41S. H. Crook, B. E. Mann, A. J. H. M. Meijer, H. Adams, P. Sawle, D. Scapens, R. Motterlini, Dalton Trans. 2011, 40, 4230–4235.
- 42W. Huber, R. Linder, J. Niesel, U. Schatzschneider, B. Spingler, P. C. Kunz, Eur. J. Inorg. Chem. 2012, 3140–3146.
- 43A. J. Atkin, J. M. Lynam, B. E. Moulton, P. Sawle, R. Motterlini, N. M. Boyle, M. T. Pryce, I. J. S. Fairlamb, Dalton Trans. 2011, 40, 5755–5761.
- 44S. McLean, B. E. Mann, R. K. Poole, Anal. Biochem. 2012, 427, 36–40.
- 45S. V. C. Vummaleti, D. Branduardi, M. Masetti, M. De Vivo, R. Motterlini, A. Cavalli, Chem. Eur. J. 2012, 18, 9267–9275.
- 46F. Zobi, L. Quaroni, G. Santoro, T. Zlateva, O. Blacque, B. Sarafimov, M. C. Schaub, A. Y. Bogdanova, J. Med. Chem. 2013, 56, 6719–6731.
- 47L. Yuan, W. Lin, L. Tan, K. Zheng, W. Huang, Angew. Chem. 2013, 125, 1670–1672; Angew. Chem. Int. Ed. 2013, 52, 1628–1630.
- 48B. W. Michel, A. R. Lippert, C. J. Chang, J. Am. Chem. Soc. 2012, 134, 15668–15671.
- 49J. Wang, J. Karpus, B. S. Zhao, Z. Luo, P. R. Chen, C. He, Angew. Chem. 2012, 124, 9790–9794; Angew. Chem. Int. Ed. 2012, 51, 9652–9656.
- 50R. D. Rimmer, H. Richter, P. C. Ford, Inorg. Chem. 2010, 49, 1180–1185.
- 51G. Bartolucci, E. Droghetti, C. Focardi, M. Bambagiotti-Alberti, M. Nocentini, G. Smulevich, J. Mass Spectrom. 2010, 45, 1041–1045.
- 52C. C. Romão, W. A. Blättler, J. D. Seixas, G. J. L. Bernardes, Chem. Soc. Rev. 2012, 41, 3571–3583.
- 53A. C. Pena, N. Penacho, L. Mancio-Silva, R. Neres, J. D. Seixas, A. C. Fernandes, C. C. Romao, M. M. Mota, G. J. L. Bernardes, A. Pamplona, Antimicrob. Agents Chemother. 2012, 56, 1281–1290.
- 54A. R. Marques, L. Kromer, D. J. Gallo, N. Penacho, S. S. Rodrigues, J. D. Seixas, G. J. L. Bernardes, P. M. Reis, S. L. Otterbein, R. A. Ruggieri, A. S. G. Goncalves, A. M. L. Goncalves, M. N. D. Matos, I. Bento, L. E. Otterbein, W. A. Blättler, C. C. Romao, Organometallics 2012, 31, 5810–5822.
- 55P. C. Kunz, H. Meyer, J. Barthel, S. Sollazzo, A. M. Schmidt, C. Janiak, Chem. Commun. 2013, 49, 4896–4898.
- 56M. A. Gonzalez, S. J. Carrington, N. L. Fry, J. L. Martinez, P. K. Mascharak, Inorg. Chem. 2012, 51, 11930–11940.
- 57P. Govender, S. Pai, U. Schatzschneider, G. S. Smith, Inorg. Chem. 2013, 52, 5470–5478.
- 58L. A. P. Antony, T. Slanina, P. Sebej, T. Solomek, P. Klan, Org. Lett. 2013, 15, 4552–4555.
- 59E. M. Sletten, C. R. Bertozzi, Angew. Chem. 2009, 121, 7108–7133;
10.1002/ange.200900942 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 6974–6998.
- 60G. Dördelmann, T. Meinhardt, T. Sowik, A. Krueger, U. Schatzschneider, Chem. Commun. 2012, 48, 11528–11530.
- 61C. Bischof, T. Joshi, A. Dimri, L. Spiccia, U. Schatzschneider, Inorg. Chem. 2013, 52, 9297–9308.
- 62H. Pfeiffer, T. Sowik, U. Schatzschneider, J. Organomet. Chem. 2013, 734, 17–24.
- 63U. Hasegawa, A. J. van der Vlies, E. Simeoni, C. Wandrey, J. A. Hubbell, J. Am. Chem. Soc. 2010, 132, 18273–18280.
- 64N. E. Brückmann, M. Wahl, G. J. Reiss, M. Kohns, W. Waetjen, P. C. Kunz, Eur. J. Inorg. Chem. 2011, 4571–4577.
- 65J. B. Matson, M. J. Webber, V. K. Tamboli, B. Weber, S. I. Stupp, Soft Matter 2012, 8, 6689–6692.
- 66J. L. Wilson, H. E. Jesse, R. K. Poole, K. S. Davidge, Curr. Pharm. Biotechnol. 2012, 13, 760–768.
- 67S. McLean, R. Begg, H. E. Jesse, B. E. Mann, G. Sanguinetti, R. K. Poole, Antioxid. Redox Signaling 2013, 19, 1999–2012.
- 68K. S. Davidge, G. Sanguinetti, C. H. Yee, A. G. Cox, C. W. McLeod, C. E. Monk, B. E. Mann, R. Motterlini, R. K. Poole, J. Biol. Chem. 2009, 284, 4516–4524.
- 69J. L. Wilson, H. E. Jesse, B. Hughes, V. Lund, K. Naylor, K. S. Davidge, G. M. Cook, B. E. Mann, R. K. Poole, Antioxid. Redox Signaling 2013, 19, 497–509.
- 70A. F. N. Tavares, M. Teixeira, C. C. Romao, J. D. Seixas, L. S. Nobre, L. M. Saraiva, J. Biol. Chem. 2011, 286, 26708–26717.
- 71H. E. Jesse, T. L. Nye, S. McLean, J. Green, B. E. Mann, R. K. Poole, Biochim. Biophys. Acta Proteins Proteomics 2013, 1834, 1693–1703.