N-Trifluoromethylthiophthalimide: A Stable Electrophilic SCF3-Reagent and its Application in the Catalytic Asymmetric Trifluoromethylsulfenylation†
Teerawut Bootwicha
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
Search for more papers by this authorXiangqian Liu
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
Search for more papers by this authorRoman Pluta
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
Search for more papers by this authorDr. Iuliana Atodiresei
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Magnus Rueping
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)===Search for more papers by this authorTeerawut Bootwicha
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
Search for more papers by this authorXiangqian Liu
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
Search for more papers by this authorRoman Pluta
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
Search for more papers by this authorDr. Iuliana Atodiresei
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Magnus Rueping
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)===Search for more papers by this authorX.L. gratefully acknowledges the Chinese Scholarship Council for a fellowship. The absolute configuration was determined by I.A.
Graphical Abstract
Cinchona alkaloid catalysts in combination with air- and moisture-stable N-trifluoromethylthiophthalimide as electrophilic SCF3 source enabled the catalytic enantioselective trifluoromethylsulfenylation. Thus, a series of α-SCF3 esters that bear a quaternary carbon stereogenic center were obtained with excellent yield and enantioselectivity. Moreover, the products can be readily converted into valuable α-SCF3 β-hydroxyesters.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201304957_sm_miscellaneous_information.pdf2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1a Selective Fluorination in Organic and Bioorganic Chemistry (Ed.: ), ACS Symposium Series, Washington, 1991;
- 1bV. A. Soloshonok, Enantiocontrolled Synthesis of Fluoro-Organic Compounds: Stereochemical Challenges and Biomedical Targets, Wiley, New York, 1999;
- 1c Organofluorine Compounds, Chemistry and Applications (Ed.: ), Springer, New York, 2000;
- 1dP. Kirsch, Modern Fluoroorganic Chemistry: Synthesis Reactivity, Applications, Wiley-VCH, Weinheim, 2004;
10.1002/352760393X Google Scholar
- 1eK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886;
- 1fD. O’Hagan, Chem. Soc. Rev. 2008, 37, 308–319.
- 2For reviews of stereoselective formation of fluorinated compounds, see:
- 2aC. Bobbio, V. Gouverneur, Org. Biomol. Chem. 2006, 4, 2065–2075;
- 2bJ.-A. Ma, D. Cahard, Chem. Rev. 2008, 108, PR 1–PR43;
- 2cD. Cahard, X. Xu, S. Couve-Bonnaire, X. Pannecoucke, Chem. Soc. Rev. 2010, 39, 558–568;
- 2dS. Lectard, Y. Hamashima, M. Sodeoka, Adv. Synth. Catal. 2010, 352, 2708–2732;
- 2eG. Valero, X. Companyó, R. Rios, Chem. Eur. J. 2011, 17, 2018–2037;
- 2fC. Ni, J. Hu, Synlett 2011, 770–782;
- 2gT. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470–477;
- 2hT. Liang, C. N. Neumann, T. Ritter, Angew. Chem. 2013, 125, 8372–8423; Angew. Chem. Int. Ed. 2013, 52, 8214–8264.
- 3
- 3a Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications (Eds.: ), Elsevier, Amsterdam, 1993;
- 3bM. Morgenthaler, E. Schweizer, A. Hoffmann-Röder, F. Benini, R. E. Martin, G. Jaeschke, B. Wagner, H. Fischer, S. Bendels, D. Zimmerli, J. Schneider, F. Diederich, M. Kansy, K. Müller, ChemMedChem 2007, 2, 1100–1115;
- 3c Current Fluoroorganic Chemistry. New Synthetic Directions, Technologies, Materials and Biological Applications (Eds.: ), ACS Symposium Series 949, Oxford University Press, 2007;
- 3dS. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320–330;
- 3eK. L. Kirk, Org. Process Res. Dev. 2008, 12, 305–321;
- 3fJ.-P. Bégué, D. Bonnet-Delpon, Bioorganic and Medicinal Chemistry of Fluorine, Wiley-VCH, Hoboken, NJ, 2008;
10.1002/9780470281895 Google Scholar
- 3gW. K. Hagmann, J. Med. Chem. 2008, 51, 4359–4369;
- 3h Fluorine in Medicinal Chemistry and Chemical Biology (Ed.: ), Wiley-Blackwell, Chichester, 2009.
10.1002/9781444312096 Google Scholar
- 4
- 4aA. Leo, C. Hansch, D. Elkins, Chem. Rev. 1971, 71, 525–616;
- 4bC. Hansch, A. Leo, S. H. Unger, K. H. Kim, D. Nikaitani, E. J. Lien, J. Med. Chem. 1973, 16, 1207–1216;
- 4cF. Leroux, P. Jeschke, M. Schlosser, Chem. Rev. 2005, 105, 827–856.
- 5
- 5aV. N. Boiko, Beilstein J. Org. Chem. 2010, 6, 880–921;
- 5bA. Tlili, T. Billard, Angew. Chem. 2013, 125, 6952–6954;
10.1002/ange.201301438 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 6818–6819;
- 5cH. Liu, X. Jiang, Chem. Asian J. 2013, DOI: .
- 6
- 6aQ.-Y. Chen, J.-X. Duan, J. Chem. Soc. Chem. Commun. 1993, 918–919;
- 6bD. J. Adams, J. H. Clark, J. Org. Chem. 2000, 65, 1456–1460;
- 6cD. J. Adams, A. Goddard, J. H. Clark, D. J. Macquarrie, Chem. Commun. 2000, 987–988;
- 6dW. Tyrra, D. Naumann, B. Hoge, Y. L. Yagupolskii, J. Fluorine Chem. 2003, 119, 101–107;
- 6eG. Teverovskiy, D. S. Surry, S. L. Buchwald, Angew. Chem. 2011, 123, 7450–7452;
10.1002/ange.201102543 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 7312–7314;
- 6fC.-P. Zhang, D. A. Vicic, J. Am. Chem. Soc. 2012, 134, 183–185;
- 6gC. Chen, Y. Xie, L. Chu, R.-W. Wang, X. Zhang, F.-L. Qing, Angew. Chem. 2012, 124, 2542–2545; Angew. Chem. Int. Ed. 2012, 51, 2492–2495;
- 6hC. Chen, L. Chu, F.-L. Qing, J. Am. Chem. Soc. 2012, 134, 12454–12457;
- 6iC.-P. Zhang, D. A. Vicic, Chem. Asian J. 2012, 7, 1756–1758;
- 6jZ. Weng, W. He, C. Chen, R. Lee, D. Tan, Z. Lai, D. Kong, Y. Yuan, K.-W. Huang, Angew. Chem. 2013, 125, 1588–1592; Angew. Chem. Int. Ed. 2013, 52, 1548–1552; for the nucleophilic trifluoromethylthiolation of benzyl and allyl bromides with [(bpy)Cu(SCF3)], see:
- 6kD. Kong, Z. Jiang, S. Xin, Z. Bai, Y. Yuan, Z. Weng, Tetrahedron 2013, 69, 6046–6050;
- 6lJ. Tan, G. Zhang, Y. Ou, Y. Yuan, Z. Weng, Chin. J. Chem. 2013, 31, 921–926.
- 7
- 7aW. A. Sheppard, J. Org. Chem. 1964, 29, 895–898;
- 7bK. Bogdanowicz-Szwed, B. Kawalek, M. Lieb, J. Fluorine Chem. 1987, 35, 317–327.
- 8S. Munavalli, D. K. Rohrbaugh, D. I. Rossman, F. J. Berg, G. W. Wagner, H. D. Durst, Synth. Commun. 2000, 30, 2847–2854.
- 9
- 9aA. Ferry, T. Billard, B. R. Langlois, E. Bacqué, J. Org. Chem. 2008, 73, 9362–9365;
- 9bA. Ferry, T. Billard, B. R. Langlois, E. Bacqué, Angew. Chem. 2009, 121, 8703–8707;
10.1002/ange.200903387 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 8551–8555;
- 9cL. D. Tran, I. Popov, O. Daugulis, J. Am. Chem. Soc. 2012, 134, 18237–18240;
- 9dA. Ferry, T. Billard, E. Bacqué, B. R. Langlois, J. Fluorine Chem. 2012, 134, 160–163;
- 9eF. Baert, J. Colomb, T. Billard, Angew. Chem. 2012, 124, 10528–10531;
10.1002/ange.201205156 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 10382–10385;
- 9fJ. Liu, L. Chu, F.-L. Qing, Org. Lett. 2013, 15, 894–897;
- 9gY.-D. Yang, A. Azuma, E. Tokunaga, M. Yamasaki, M. Shiro, N. Shibata, J. Am. Chem. Soc. 2013, 135, 8782–8785.
- 10X. Shao, X. Wang, T. Yang, L. Lu, Q. Shen, Angew. Chem. 2013, 125, 3541–3544; Angew. Chem. Int. Ed. 2013, 52, 3457–3460.
- 11E. Fillion, D. Fishlock, A. Wilsily, J. M. Goll, J. Org. Chem. 2005, 70, 1316–1327.
- 12Recent reviews for the application of organocatalysis in the synthesis of bioactive molecules and natural products:
- 12aR. Marcia de Figueiredo, M. Christmann, Eur. J. Org. Chem. 2007, 2575–2600;
- 12bE. Marqués-López, R. P. Herrera, M. Christmann, Nat. Prod. Rep. 2010, 27, 1138–1167.
- 13CCDC 963612 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 14This Communication is published back-to-back with the following study: X. Q. Wang, T. Yang, X. Cheng, Q. Shen, Angew. Chem. 2013, 125, 13098–13102; Angew. Chem. Int. Ed. 2013, 52, 12860–12864.