Red Fluorescent Proteins: Advanced Imaging Applications and Future Design
Dr. Daria M. Shcherbakova
Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (USA)
These authors contributed equally to this work.
Search for more papers by this authorDr. Oksana M. Subach
Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (USA)
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Vladislav V. Verkhusha
Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (USA)
Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (USA)Search for more papers by this authorDr. Daria M. Shcherbakova
Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (USA)
These authors contributed equally to this work.
Search for more papers by this authorDr. Oksana M. Subach
Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (USA)
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Vladislav V. Verkhusha
Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (USA)
Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (USA)Search for more papers by this authorGraphical Abstract
Well red: Modern red fluorescent proteins (RFPs) provide new possibilities to study biological processes at the levels from single molecules to whole organisms (see scheme). Conventional and far-red RFPs, RFPs with a large Stokes shift, fluorescent timers, irreversibly photoactivatable, and reversibly photoswitchable RFPs are discussed in relationship to advanced imaging approaches.
Abstract
In the past few years a large series of the advanced red-shifted fluorescent proteins (RFPs) has been developed. These enhanced RFPs provide new possibilities to study biological processes at the levels ranging from single molecules to whole organisms. Herein the relationship between the properties of the RFPs of different phenotypes and their applications to various imaging techniques are described. Existing and emerging imaging approaches are discussed for conventional RFPs, far-red FPs, RFPs with a large Stokes shift, fluorescent timers, irreversibly photoactivatable and reversibly photoswitchable RFPs. Advantages and limitations of specific RFPs for each technique are presented. Recent progress in understanding the chemical transformations of red chromophores allows the future RFP phenotypes and their respective novel imaging applications to be foreseen.
References
- 1
- 1aL. D. Lavis, R. T. Raines, ACS Chem. Biol. 2008, 3, 142–155;
- 1bI. Johnson, M. T. Z. Spence, The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 11th ed., Life Technologies Corp., USA, 2010.
- 2
- 2aF. V. Subach, V. N. Malashkevich, W. D. Zencheck, H. Xiao, G. S. Filonov, S. C. Almo, V. V. Verkhusha, Proc. Natl. Acad. Sci. USA 2009, 106, 21097–21102;
- 2bO. M. Subach, V. N. Malashkevich, W. D. Zencheck, K. S. Morozova, K. D. Piatkevich, S. C. Almo, V. V. Verkhusha, Chem. Biol. 2010, 17, 333–341;
- 2cH. Mizuno, T. K. Mal, K. I. Tong, R. Ando, T. Furuta, M. Ikura, A. Miyawaki, Mol. Cell 2003, 12, 1051–1058;
- 2dA. A. Pakhomov, V. I. Martynov, Biochemistry 2007, 46, 11528–11535;
- 2eS. Pletnev, F. V. Subach, Z. Dauter, A. Wlodawer, V. V. Verkhusha, J. Am. Chem. Soc. 2010, 132, 2243–2253;
- 2fS. J. Remington, R. M. Wachter, D. K. Yarbrough, B. Branchaud, D. C. Anderson, K. Kallio, K. A. Lukyanov, Biochemistry 2005, 44, 202–212;
- 2gX. Shu, N. C. Shaner, C. A. Yarbrough, R. Y. Tsien, S. J. Remington, Biochemistry 2006, 45, 9639–9647;
- 2hI. V. Yampolsky, S. J. Remington, V. I. Martynov, V. K. Potapov, S. Lukyanov, K. A. Lukyanov, Biochemistry 2005, 44, 5788–5793;
- 2iK. D. Piatkevich, V. N. Malashkevich, S. C. Almo, V. V. Verkhusha, J. Am. Chem. Soc. 2010, 132, 10762–10770.
- 3
- 3aR. L. Strack, D. E. Strongin, D. Bhattacharyya, W. Tao, A. Berman, H. E. Broxmeyer, R. J. Keenan, B. S. Glick, Nat. Methods 2008, 5, 955–957;
- 3bW. Tao, B. G. Evans, J. Yao, S. Cooper, K. Cornetta, C. B. Ballas, G. Hangoc, H. E. Broxmeyer, Stem Cells 2007, 25, 670–678.
- 4R. L. Strack, B. Hein, D. Bhattacharyya, S. W. Hell, R. J. Keenan, B. S. Glick, Biochemistry 2009, 48, 8279–8281.
- 5R. L. Strack, D. Bhattacharyya, B. S. Glick, R. J. Keenan, BMC Biotechnol. 2009, 9, 32.
- 6N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood, M. W. Davidson, R. Y. Tsien, Nat. Methods 2008, 5, 545–551.
- 7N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E. Palmer, R. Y. Tsien, Nat. Biotechnol. 2004, 22, 1567–1572.
- 8E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, D. M. Chudakov, Nat. Methods 2007, 4, 555–557.
- 9A. Sakaue-Sawano, H. Kurokawa, T. Morimura, A. Hanyu, H. Hama, H. Osawa, S. Kashiwagi, K. Fukami, T. Miyata, H. Miyoshi, T. Imamura, M. Ogawa, H. Masai, A. Miyawaki, Cell 2008, 132, 487–498.
- 10H. Tsutsui, S. Karasawa, Y. Okamura, A. Miyawaki, Nat. Methods 2008, 5, 683–685.
- 11S. Kredel, F. Oswald, K. Nienhaus, K. Deuschle, C. Rocker, M. Wolff, R. Heilker, G. U. Nienhaus, J. Wiedenmann, PLoS One 2009, 4, e 4391.
- 12
- 12aW. B. Frommer, M. W. Davidson, R. E. Campbell, Chem. Soc. Rev. 2009, 38, 2833–2841;
- 12bA. Ibraheem, R. E. Campbell, Curr. Opin. Chem. Biol. 2010, 14, 30–36.
- 13
- 13aH. J. Carlson, R. E. Campbell, Curr. Opin. Biotechnol. 2009, 20, 19–27;
- 13bC. Schultz, A. Schleifenbaum, J. Goedhart, T. W. Gadella, Jr., ChemBioChem 2005, 6, 1323–1330.
- 14Y. Sun, C. F. Booker, S. Kumari, R. N. Day, M. Davidson, A. Periasamy, J. Biomed. Opt. 2009, 14, 054009.
- 15T. Nagai, S. Yamada, T. Tominaga, M. Ichikawa, A. Miyawaki, Proc. Natl. Acad. Sci. USA 2004, 101, 10554–10559.
- 16D. E. Johnson, H. W. Ai, P. Wong, J. D. Young, R. E. Campbell, J. R. Casey, J. Biol. Chem. 2009, 284, 20499–20511.
- 17Y. Zhao, S. Araki, J. Wu, T. Teramoto, Y. F. Chang, M. Nakano, A. S. Abdelfattah, M. Fujiwara, T. Ishihara, T. Nagai, R. E. Campbell, Science 2011, 333, 1888–1891.
- 18
- 18aJ. Y. Fan, Z. Q. Cui, H. P. Wei, Z. P. Zhang, Y. F. Zhou, Y. P. Wang, X. E. Zhang, Biochem. Biophys. Res. Commun. 2008, 367, 47–53;
- 18bS. A. Davidson, R. H. Gilkey, H. S. Colburn, L. H. Carney, J. Acoust. Soc. Am. 2006, 119, 2258–2275.
- 19T. Sunabori, A. Tokunaga, T. Nagai, K. Sawamoto, M. Okabe, A. Miyawaki, Y. Matsuzaki, T. Miyata, H. Okano, J. Cell Sci. 2008, 121, 1204–1212.
- 20M. Sugiyama, A. Sakaue-Sawano, T. Iimura, K. Fukami, T. Kitaguchi, K. Kawakami, H. Okamoto, S. Higashijima, A. Miyawaki, Proc. Natl. Acad. Sci. USA 2009, 106, 20812–20817.
- 21J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. Stelzer, Science 2004, 305, 1007–1009.
- 22A. H. Voie, D. H. Burns, F. A. Spelman, J. Microsc. 1993, 170, 229–236.
- 23M. Tokunaga, N. Imamoto, K. Sakata-Sogawa, Nat. Methods 2008, 5, 159–161.
- 24J. Huisken, D. Y. Stainier, Development 2009, 136, 1963–1975.
- 25
- 25aB. G. Wang, K. Konig, K. J. Halbhuber, J. Microsc. 2010, 238, 1–20;
- 25bW. Denk, J. H. Strickler, W. W. Webb, Science 1990, 248, 73–76;
- 25cW. Denk, K. Svoboda, Neuron 1997, 18, 351–357.
- 26G. H. Patterson, D. W. Piston, Biophys. J. 2000, 78, 2159–2162.
- 27D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, J. Condeelis, Nat. Protoc. 2011, 6, 1500–1520.
- 28M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, A. Rebane, Nat. Methods 2011, 8, 393–399.
- 29B. Hein, K. I. Willig, S. W. Hell, Proc. Natl. Acad. Sci. USA 2008, 105, 14271–14276.
- 30A. M. Smith, M. C. Mancini, S. Nie, Nat. Nanotechnol. 2009, 4, 710–711.
- 31M. Z. Lin, M. R. McKeown, H. L. Ng, T. A. Aguilera, N. C. Shaner, R. E. Campbell, S. R. Adams, L. A. Gross, W. Ma, T. Alber, R. Y. Tsien, Chem. Biol. 2009, 16, 1169–1179.
- 32K. S. Morozova, K. D. Piatkevich, T. J. Gould, J. Zhang, J. Bewersdorf, V. V. Verkhusha, Biophys. J. 2010, 99, L13–15.
- 33D. Shcherbo, I. I. Shemiakina, A. V. Ryabova, K. E. Luker, B. T. Schmidt, E. A. Souslova, T. V. Gorodnicheva, L. Strukova, K. M. Shidlovskiy, O. V. Britanova, A. G. Zaraisky, K. A. Lukyanov, V. B. Loschenov, G. D. Luker, D. M. Chudakov, Nat. Methods 2010, 7, 827–829.
- 34X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, R. Y. Tsien, Science 2009, 324, 804–807.
- 35G. S. Filonov, K. D. Piatkevich, L. M. Ting, J. Zhang, K. Kim, V. V. Verkhusha, Nat. Biotechnol. 2011, 29, 757–761.
- 36N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, V. Ntziachristos, J. Biomed. Opt. 2008, 13, 044008.
- 37O. M. Subach, G. H. Patterson, L. M. Ting, Y. Wang, J. S. Condeelis, V. V. Verkhusha, Nat. Methods 2011, 8, 771–777.
- 38D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, D. M. Chudakov, Nat. Methods 2007, 4, 741–746.
- 39R. Diéguez-Hurtado, J. Martín, I. Martínez-Corral, M. D. Martínez, D. Megías, D. Olmeda, S. Ortega, Genesis 2011, 49, 36–45.
- 40S. W. Hell, J. Wichmann, Opt. Lett. 1994, 19, 780–782.
- 41O. Zapata-Hommer, O. Griesbeck, BMC Biotechnol. 2003, 3, 5.
- 42H. W. Ai, K. L. Hazelwood, M. W. Davidson, R. E. Campbell, Nat. Methods 2008, 5, 401–403.
- 43D. M. Shcherbakova, M. A. Hink, L. Joosen, T. J. Gadella, Jr., V. V. Verkhusha, J. Am. Chem. Soc. 2012, 134, 7913–7923..
- 44T. Kogure, S. Karasawa, T. Araki, K. Saito, M. Kinjo, A. Miyawaki, Nat. Biotechnol. 2006, 24, 577–581.
- 45K. D. Piatkevich, J. Hulit, O. M. Subach, B. Wu, A. Abdulla, J. E. Segall, V. V. Verkhusha, Proc. Natl. Acad. Sci. USA 2010, 107, 5369–5374.
- 46K. Bacia, S. A. Kim, P. Schwille, Nat. Methods 2006, 3, 83–89.
- 47H. Kawano, T. Kogure, Y. Abe, H. Mizuno, A. Miyawaki, Nat. Methods 2008, 5, 373–374.
- 48D. Shcherbo, C. S. Murphy, G. V. Ermakova, E. A. Solovieva, T. V. Chepurnykh, A. S. Shcheglov, V. V. Verkhusha, V. Z. Pletnev, K. L. Hazelwood, P. M. Roche, S. Lukyanov, A. G. Zaraisky, M. W. Davidson, D. M. Chudakov, Biochem. J. 2009, 418, 567–574.
- 49F. V. Subach, O. M. Subach, I. S. Gundorov, K. S. Morozova, K. D. Piatkevich, A. M. Cuervo, V. V. Verkhusha, Nat. Chem. Biol. 2009, 5, 118–126.
- 50T. Tsuboi, T. Kitaguchi, S. Karasawa, M. Fukuda, A. Miyawaki, Mol. Biol. Cell 2010, 21, 87–94.
- 51F. V. Subach, G. H. Patterson, S. Manley, J. M. Gillette, J. Lippincott-Schwartz, V. V. Verkhusha, Nat. Methods 2009, 6, 153–159.
- 52F. V. Subach, G. H. Patterson, M. Renz, J. Lippincott-Schwartz, V. V. Verkhusha, J. Am. Chem. Soc. 2010, 132, 6481–6491.
- 53M. S. Gunewardene, F. V. Subach, T. J. Gould, G. P. Penoncello, M. V. Gudheti, V. V. Verkhusha, S. T. Hess, Biophys. J. 2011, 101, 1522–1528.
- 54D. M. Chudakov, S. Lukyanov, K. A. Lukyanov, Nat. Protoc. 2007, 2, 2024–2032.
- 55S. A. McKinney, C. S. Murphy, K. L. Hazelwood, M. W. Davidson, L. L. Looger, Nat. Methods 2009, 6, 131–133.
- 56aS. Habuchi, H. Tsutsui, A. B. Kochaniak, A. Miyawaki, A. M. van Oijen, PLoS One 2008, 3, e 3944;
- 56bH. Hoi, N. C. Shaner, M. W. Davidson, C. W. Cairo, J. Wang, R. E. Campbell, J. Mol. Biol. 2010, 401, 776–791.
- 57J. Fuchs, S. Bohme, F. Oswald, P. N. Hedde, M. Krause, J. Wiedenmann, G. U. Nienhaus, Nat. Methods 2010, 7, 627–630.
- 58K. B. Bravaya, B. L. Grigorenko, A. V. Nemukhin, A. I. Krylov, Acc. Chem. Res. 2012, 45, 265–275.
- 59A. C. Stiel, M. Andresen, H. Bock, M. Hilbert, J. Schilde, A. Schonle, C. Eggeling, A. Egner, S. W. Hell, S. Jakobs, Biophys. J. 2008, 95, 2989–2997.
- 60F. V. Subach, L. Zhang, T. W. Gadella, N. G. Gurskaya, K. A. Lukyanov, V. V. Verkhusha, Chem. Biol. 2010, 17, 745–755.
- 61
- 61aG. T. Hanson, T. B. McAnaney, E. S. Park, M. E. Rendell, D. K. Yarbrough, S. Chu, L. Xi, S. G. Boxer, M. H. Montrose, S. J. Remington, Biochemistry 2002, 41, 15477–15488;
- 61bJ. R. Moore, S. A. Davidson, M. Singh, Gynecol. Oncol. 2004, 95, 729–732.
- 62D. M. Chudakov, V. V. Verkhusha, D. B. Staroverov, E. A. Souslova, S. Lukyanov, K. A. Lukyanov, Nat. Biotechnol. 2004, 22, 1435–1439.
- 63J. Wiedenmann, S. Ivanchenko, F. Oswald, F. Schmitt, C. Rocker, A. Salih, K. D. Spindler, G. U. Nienhaus, Proc. Natl. Acad. Sci. USA 2004, 101, 15905–15910.
- 64V. Adam, M. Lelimousin, S. Boehme, G. Desfonds, K. Nienhaus, M. J. Field, J. Wiedenmann, S. McSweeney, G. U. Nienhaus, D. Bourgeois, Proc. Natl. Acad. Sci. USA 2008, 105, 18343–18348.
- 65E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, Science 2006, 313, 1642–1645.
- 66T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N. T. Urban, F. Lavoie-Cardinal, K. I. Willig, C. Eggeling, S. Jakobs, S. W. Hell, Nature 2011, 478, 204–208.
- 67
- 67aS. W. Hell, Science 2007, 316, 1153–1158;
- 67bS. W. Hell, Nat. Methods 2009, 6, 24–32;
- 67cB. Huang, H. Babcock, X. Zhuang, Cell 2010, 143, 1047–1058.
- 68T. A. Klar, S. W. Hell, Opt. Lett. 1999, 24, 954–956.
- 69S. W. Hell, M. Kroug, Appl. Phys. B 1995, 60, 495–497.
- 70S. W. Hell, Nat. Biotechnol. 2003, 21, 1347–1355.
- 71M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, Proc. Natl. Acad. Sci. USA 2005, 102, 17565–17569.
- 72P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. Gustafsson, Nat. Methods 2009, 6, 339–342.
- 73M. Andresen, A. C. Stiel, J. Folling, D. Wenzel, A. Schonle, A. Egner, C. Eggeling, S. W. Hell, S. Jakobs, Nat. Biotechnol. 2008, 26, 1035–1040.
- 74J. C. Vaughan, X. Zhuang, Nat. Biotechnol. 2011, 29, 880–881.
- 75S. T. Hess, T. P. Girirajan, M. D. Mason, Biophys. J. 2006, 91, 4258–4272.
- 76M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, Science 2007, 317, 1749–1753.
- 77M. Heilemann, S. van de Linde, M. Schuttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, Angew. Chem. 2008, 120, 6266–6271;
10.1002/ange.200802376 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 6172–6176.
- 78J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, Nat. Methods 2008, 5, 943–945.
- 79D. T. Burnette, P. Sengupta, Y. Dai, J. Lippincott-Schwartz, B. Kachar, Proc. Natl. Acad. Sci. USA 2011, 108, 21081–21086.
- 80A. G. York, A. Ghitani, A. Vaziri, M. W. Davidson, H. Shroff, Nat. Methods 2011, 8, 327–333.
- 81G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, H. F. Hess, Proc. Natl. Acad. Sci. USA 2009, 106, 3125–3130.
- 82T. J. Gould, M. S. Gunewardene, M. V. Gudheti, V. V. Verkhusha, S. R. Yin, J. A. Gosse, S. T. Hess, Nat. Methods 2008, 5, 1027–1030.
- 83C. Flors, J. Hotta, H. Uji-i, P. Dedecker, R. Ando, H. Mizuno, A. Miyawaki, J. Hofkens, J. Am. Chem. Soc. 2007, 129, 13970–13977.
- 84S. T. Hess, T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, J. Zimmerberg, Proc. Natl. Acad. Sci. USA 2007, 104, 17370–17375.
- 85M. J. Rust, M. Bates, X. Zhuang, Nat. Methods 2006, 3, 793–795.
- 86
- 86aA. Egner, C. Geisler, C. von Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. C. Stiel, S. Jakobs, C. Eggeling, A. Schonle, S. W. Hell, Biophys. J. 2007, 93, 3285–3290;
- 86bsee Ref. [59].
- 87
- 87aM. Tomura, N. Yoshida, J. Tanaka, S. Karasawa, Y. Miwa, A. Miyawaki, O. Kanagawa, Proc. Natl. Acad. Sci. USA 2008, 105, 10871–10876;
- 87bD. Kedrin, B. Gligorijevic, J. Wyckoff, V. V. Verkhusha, J. Condeelis, J. E. Segall, J. van Rheenen, Nat. Methods 2008, 5, 1019–1021;
- 87cS. L. Griswold, K. C. Sajja, C. W. Jang, R. R. Behringer, Genesis 2011, 49, 591–598;
- 87dS. Nowotschin, A. K. Hadjantonakis, BMC Dev. Biol. 2009, 9, 49.
- 88A. Dovas, B. Gligorijevic, X. Chen, D. Entenberg, J. Condeelis, D. Cox, PLoS One 2011, 6, e 16485.
- 89F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro, Nat. Methods 2011, 8, 1047–1049.
- 90G. U. Nienhaus, K. Nienhaus, A. Holzle, S. Ivanchenko, F. Renzi, F. Oswald, M. Wolff, F. Schmitt, C. Rocker, B. Vallone, W. Weidemann, R. Heilker, H. Nar, J. Wiedenmann, Photochem. Photobiol. 2006, 82, 351–358.
- 91H. Shroff, C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, E. Betzig, Proc. Natl. Acad. Sci. USA 2007, 104, 20308–20313.
- 92P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, C. M. Waterman, Nature 2010, 468, 580–584.
- 93T. A. Brown, A. N. Tkachuk, G. Shtengel, B. G. Kopek, D. F. Bogenhagen, H. F. Hess, D. A. Clayton, Mol. Cell Biol. 2011, 31, 4994–5010.
- 94S. Pletnev, F. V. Subach, Z. Dauter, A. Wlodawer, V. V. Verkhusha, J. Mol. Biol. 2012, 417, 144–151.
- 95M. A. Schwentker, H. Bock, M. Hofmann, S. Jakobs, J. Bewersdorf, C. Eggeling, S. W. Hell, Microsc. Res. Tech. 2007, 70, 269–280.
- 96
- 96asee Ref. [2b];
- 96bsee Ref. [2e].
- 97J. N. Henderson, M. F. Osborn, N. Koon, R. Gepshtein, D. Huppert, S. J. Remington, J. Am. Chem. Soc. 2009, 131, 13212–13213.
- 98X. Shu, L. Wang, L. Colip, K. Kallio, S. J. Remington, Protein Sci. 2009, 18, 460–466.
- 99K. B. Bravaya, O. M. Subach, N. Korovina, V. V. Verkhusha, A. I. Krylov, J. Am. Chem. Soc. 2012, 134, 2807–2814.
- 100
- 100aI. V. Yampolsky, A. A. Kislukhin, T. T. Amatov, D. Shcherbo, V. K. Potapov, S. Lukyanov, K. A. Lukyanov, Bioorg. Chem. 2008, 36, 96–104;
- 100bI. V. Yampolsky, T. A. Balashova, K. A. Lukyanov, Biochemistry 2009, 48, 8077–8082.
- 101L. A. Gross, G. S. Baird, R. C. Hoffman, K. K. Baldridge, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2000, 97, 11990–11995.
- 102J. Petersen, P. G. Wilmann, T. Beddoe, A. J. Oakley, R. J. Devenish, M. Prescott, J. Rossjohn, J. Biol. Chem. 2003, 278, 44626–44631.
- 103
- 103aO. M. Subach, I. S. Gundorov, M. Yoshimura, F. V. Subach, J. Zhang, D. Gruenwald, E. A. Souslova, D. M. Chudakov, V. V. Verkhusha, Chem. Biol. 2008, 15, 1116–1124;
- 103bO. M. Subach, P. J. Cranfill, M. W. Davidson, V. V. Verkhusha, PLoS One 2011, 6, e 28674.
- 104M. Tantama, Y. P. Hung, G. Yellen, J. Am. Chem. Soc. 2011, 133, 10034–10037.
- 105T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell, S. Jakobs, Nat. Biotechnol. 2011, 29, 942–947.