Robust Self-Assembly of Highly Ordered Complex Structures by Controlled Evaporation of Confined Microfluids†
Suck Won Hong
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (USA), Fax: (+1) 515-294-7202
Search for more papers by this authorMyunghwan Byun
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (USA), Fax: (+1) 515-294-7202
Search for more papers by this authorZhiqun Lin Prof.
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (USA), Fax: (+1) 515-294-7202
Search for more papers by this authorSuck Won Hong
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (USA), Fax: (+1) 515-294-7202
Search for more papers by this authorMyunghwan Byun
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (USA), Fax: (+1) 515-294-7202
Search for more papers by this authorZhiqun Lin Prof.
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (USA), Fax: (+1) 515-294-7202
Search for more papers by this authorWe gratefully acknowledge support from the National Science Foundation (CAREER award CBET-0844084) and 3M.
Graphical Abstract
Coffee rings: Polymer solutions are confined in a simple geometry comprised of a curved surface placed upon a flat substrate. Simply by changing the shape of the upper surface of the imposed geometry, the controlled, evaporative self-assembly of polymer solutions yields a variety of complex, intriguing, and well-ordered structures over large areas (see picture).
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
anie_200804633_sm_miscellaneous_information.pdf525.5 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, H. M. Jaeger, Nat. Mater. 2006, 5, 265.
- 2C. P. Martin, M. O. Blunt, E. Pauliac-Vaujour, A. Stannard, P. Moriarty, Phys. Rev. Lett. 2007, 99, 116103.
- 3B. P. Khanal, E. R. Zubarev, Angew. Chem. 2007, 119, 2245;
10.1002/ange.200604889 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 2195.
- 4E. Rabani, D. R. Reichman, P. L. Geissler, L. E. Brus, Nature 2003, 426, 271.
- 5Z. Mitov, E. Kumacheva, Phys. Rev. Lett. 1998, 81, 3427.
- 6R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Nature 1997, 389, 827.
- 7E. Pauliac-Vaujour, A. Stannard, C. P. Martin, M. O. Blunt, I. Notingher, P. J. Moriarty, I. Vancea, U. Thiele, Phys. Rev. Lett. 2008, 100, 176102.
- 8V. X. Nguyen, K. J. Stebe, Phys. Rev. Lett. 2002, 88, 164501.
- 9M. Gleiche, L. F. Chi, H. Fuchs, Nature 2000, 403, 173.
- 10J. Huang, F. Kim, A. R. Tao, S. Connor, P. D. Yang, Nat. Mater. 2005, 4, 896.
- 11J. Huang, R. Fan, S. Connor, P. D. Yang, Angew. Chem. 2007, 119, 2466; Angew. Chem. Int. Ed. 2007, 46, 2414.
- 12S. W. Hong, J. Xu, J. Xia, Z. Q. Lin, F. Qiu, Y. L. Yang, Chem. Mater. 2005, 17, 6223.
- 13J. Xu, J. Xia, Z. Q. Lin, Angew. Chem. 2007, 119, 1892; Angew. Chem. Int. Ed. 2007, 46, 1860.
- 14H. Yabu, M. Shimomura, Adv. Funct. Mater. 2005, 15, 575.
- 15D. J. Harris, H. Hu, J. C. Conrad, J. A. Lewis, Phys. Rev. Lett. 2007, 98, 148301.
- 16V. V. Tsukruk, H. Ko, S. Peleshanko, Phys. Rev. Lett. 2004, 92, 065502.
- 17S. W. Hong, J. Xia, Z. Q. Lin, Adv. Mater. 2007, 19, 1413.
- 18J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic crystals-modeling the flow of light, Princeton University Press, Princeton, NJ, 1995.
- 19H. O. Jacobs, G. M. Whitesides, Science 2001, 291, 1763.
- 20S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, J. A. Rogers, Nat. Nanotechnol. 2007, 2, 230.
- 21B. J. Schwartz, Annu. Rev. Phys. Chem. 2003, 54, 141.
- 22D. L. Chen, C. J. Gerdts, R. F. Ismagilov, J. Am. Chem. Soc. 2005, 127, 9672.
- 23Y. Lin, A. Boker, J. He, K. Sill, H. Xiang, C. Abetz, X. Li, J. Wang, T. Emrick, S. Long, Q. Wang, A. Balazs, T. P. Russell, Nature 2005, 434, 55.
- 24E. Delamarche, A. Bernard, H. Schmid, B. Michel, H. Biebuyck, Science 1997, 276, 779.
- 25J. Xu, J. Xia, S. W. Hong, Z. Q. Lin, F. Qiu, Y. L. Yang, Phys. Rev. Lett. 2006, 96, 066104.
- 26E. Adachi, A. S. Dimitrov, K. Nagayama, Langmuir 1995, 11, 1057.
- 27S. W. Hong, J. Xia, M. Byun, Q. Zou, Z. Q. Lin, Macromolecules 2007, 40, 2831.
- 28S. Vyawahare, K. M. Craig, A. Scherer, Nano Lett. 2006, 6, 271.