Design, Synthesis, and Properties of Molecule-Based Assemblies with Large Second-Order Optical Nonlinearities
Corresponding Author
Prof. Tobin J. Marks
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113 (USA). Telefax: Int. code + (708)491-2990
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113 (USA). Telefax: Int. code + (708)491-2990Search for more papers by this authorCorresponding Author
Prof. Mark A. Ratner
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113 (USA). Telefax: Int. code + (708)491-2990
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113 (USA). Telefax: Int. code + (708)491-2990Search for more papers by this authorCorresponding Author
Prof. Tobin J. Marks
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113 (USA). Telefax: Int. code + (708)491-2990
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113 (USA). Telefax: Int. code + (708)491-2990Search for more papers by this authorCorresponding Author
Prof. Mark A. Ratner
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113 (USA). Telefax: Int. code + (708)491-2990
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113 (USA). Telefax: Int. code + (708)491-2990Search for more papers by this authorGraphical Abstract
The rational construction of supramolecular assemblies with preordained collective properties is an important theme in many areas of contemporary chemistry. The advances made in this respect with regard to polymeric NLO materials, and what problems must still be addressed before technologically viable NLO building blocks become readily available, are surveyed by the authors of this review. Superlattices of the type shown schematically on the right should be among the most promising materials.
Abstract
The design, synthesis, characterization, and understanding of new molecular and macromolecular assemblies with large macroscopic optical nonlinearities represents an active field of research at the interface of modern chemistry, physics, and materials science. Challenges in this area of photonic materials typify an important theme in contemporary chemistry: to create new types of functional materials by the rational construction of supramolecular assemblies exhibiting preordained collective phenomena by virtue of “engineered” molecule–molecule interactions and spatial relationships. This review surveys several approaches to, and the microstructural and optical properties of, second-order nonlinear optical materials built from noncentrosymmetric assemblies of chromophores having large molecular hyperpolarizabilities. Such types of materials can efficiently double the frequency of incident light, exhibit other second-order nonlinear optical effects, and contribute to the knowledge base needed for new photonic device technologies. Systems described include chromophore macromolecule guesthost matrices, chromophore-functionalized glassy macromolecules, thermally crosslinked chromophore-macromolecule matrices, and intrinsically acentric self-assembled chromophoric superlattices.
References
- 1(a) J.-M. Lehn, Science 1993, 260, 1762–1763, and references therein. (b) Top. Curr. Chem. 1993, 165, and articles therein. (c) J.-M. Lehn, Angew. Chem. 1988, 100, 91–116. Angew. Chem. Int. Ed. Engl., 1988, 27, 89–112, and references therein. (d) D. T. Seto, G. M. Whitesides, J. Am. Chem. Soc. 1993, 115, 905–916, and references therein.
- 2(a)
Optical Nonlinearities in Chemistry (Ed.: D. M. Burland)
(Chem. Rev.
1994,
94).
(b)
T. Kaino,
S. Tomaru,
Adv. Mater.
1993,
5, 172–178, and references therein.
(c)
Nonlinear Optical Properties of Organic Materials VI (Proc. SPIE Int. Soc. Opt. Eng.
1993, 2025).
(d)
Nonlinear Optical Properties of Organic Materials V (Proc. SPIE Int. Soc. Opt. Eng.
1992,
1775).
(e)
Materials for Nonlinear Optics: Chemical Perspectives (ACS Symp. Ser.
1991, 455).
(f)
Nonlinear Optical Properties of Organic Materials IV, (Proc. SPIE Int. Soc. Opt. Eng.
1991,
1560).
(g)
P. N. Prasad,
D. J. Williams,
Introduction to Nonlinear Optical Effects in Molecules and Polymers,
Wiley, New York,
1991.
(h)
Nonlinear Optical Properties of Organic Materials III, (Proc. SPIE Int. Soc. Opt. Eng.
1991,
1337).
(i)
Nonlinear Optical Effects in Organic Polymers (Eds.:
J. Messier,
F. Kajar,
P. N. Prasad,
D. Ulrich)
Kluwer, Dordrecht,
1989.
10.1007/978-94-009-2295-2 Google Scholar(j) Organic Materials for Nonlinear Optics (Eds.: R. A. Hann, D. Bloor) Royal Society of Chemistry, London, 1988. (k) Nonlinear Optical Properties of Organic Molecules and Crystals Vol. 1,2. (Eds.: D. S. Chemla, J. Zyss) Academic Press, New York, 1987. (l) for organometallic NLO materials see also N. J. Long, Angew. Chem. 1995, 107, 37–56. Angew. Chem. Int. Ed. Engl. 1995, 34, 21–38. (m) for a molecule-oriented introduction into the field of nonlinear optical materials see G. H. Wagmiere, Linear and Nonlinear Optical Properties of Molecules, VCH/Helvetica Chimica Acta, Weinheim/Basel, 1993.
- 3(a)
T. Ishiguro,
K. Yamija,
Organic Superconductors,
Vol. 88,
Springer, Berlin,
1990, p. 288.
10.1007/978-3-642-97190-7 Google Scholar(b) The Physics and Chemistry of Organic Superconductors, Vol. 51 (Eds.: G. Saito, S. Kagoshima) Springer, Berlin, 1990, p. 476. (c) T. J. Marks, Angew. Chem. 1990, 102, 886–908. Angew. Chem. Int. Ed. Engl. 1990, 29, 857–879, and references therein. (d) J. R. Ferraro, J. M. Williams, Introduction to Synthetic Organic Conductors, Academic Press: Orlando, FL, USA, 1987.
- 4(a) J. S. Miller, A. J. Epstein, Angew. Chem. 1994, 106, 399–432. Angew. Chem. Int. Ed. Engl., 1994, 33, 385–415. (b) J. S. Miller, A. J. Epstein, W. M. Reiff, Accts. Chem. Res. 1988, 21, 114–120, and references therein.
- 5(a) M. R. Wasielewski, Chem. Rev., 1992, 92, 435–461, and references therein. (b) J. Deisenhofer, H. Michel, Angew. Chem. 1989, 101, 872–892. Angew. Chem. Int. Ed. Engl. 1989, 28, 829–847. (c) R. Huber, Angew. Chem. Int. Ed. Engl. 1989, 101, 849–871 and Angew. Chem. Int. Ed. Engl. 1989, 28, 848–869.
- 6(a)
R. W. Boyd,
Nonlinear Optics,
Academic Press, New York,
1992.
10.1016/B978-0-12-121680-1.50012-6 Google Scholar(b) Y. R. Shen, The Principles of Nonlinear Optics, Wiley, New York, 1984.
- 7(a) K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nabata, J. Shan, C. Wu, J. T. Yardley, Proc. SPIE Int. Soc. Opt. Eng. 1993. 2025, 488–506. (b) T. A. Tumolillo, Jr., P. R. Ashley, Proc. SPIE Int. Soc. Opt. Eng. 1993, 2205, 507–515. (c) W. H. G. Horsthuis, M. M. K. Koerkamp, J.-L. Heidemann, H. W. Mertens, B. H. Hams, Proc. SPIE Int. Soc. Opt. Eng. 1993, 2205, 516–523. (d) C. C. Teng, Appl. Phys. Lett. 1992, 60, 1538–1540. (e) D. E. Bossi, R. W. Ade, Laser Focus World, 1992, September, 135–142. (f) J. D. Swalen, G. C. Bjorklund, W. Fleming, R. Hung, M. Jurich, V. Y. Lee, R. D. Miller, W. E. Moener, D. Y. Morichere, A. Skamanich, B. A. Smith Proc. SPIE Int. Soc. Opt. Eng. 1993, 2205, pp. 369–378. (g) G. R. Möhlmann, W. H. G. Horsthuis, H. W. Mertens, A. McDonach, M. J. B. Diemeer, F. M. M. Suyten, B. Hendricksen, C. Duchet, P. Fabre, C. Brot, J. M. Copeland, J. R. Mellor, E. van Tomme, P. van Daek, R. Baets ACS Symp. Ser. 1991, 455, 426–433. (h) D. G. Girton, S. L. Kwiatkowski, G. L. Lipscomb, R. S. Lytel, Appl. Phys. Lett. 1991, 58, 1730–1732.
- 8 D. R. Kanis, M. A. Ratner, T. J. Marks, Chem. Rev. 1994. 94. 195–242.
- 9(a) K. D. Singer, J. E. Sohn, S. J. Lalama, Appl. Phys. Lett. 1986, 49, 248–250. (b) K. D. Singer, M. G. Kuzyk, J. E. Sohn, J. Opt. Soc. Am. B, 1987, 4, 968–975. (c) G. A. Meredith, J. G. Van Dusen, D. J. Williams, Macromolecules 1982, 15, 1385–1389.
- 10(a) H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson, Macromolecules, 1988, 21, 526–528. (b) J. G. Victor, J. M. Torkelson, Macromolecules 1987, 20, 2241–2250. (c) H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson, Macromolecules 1990, 23, 3540–3647 and 3648–3654, and references therein. (d) S. Schüssler, R. Richert, H. Bässler, Macromolecules 1994, 27, 4318–4326.
- 11 L. C. E. Struik, Physical Aging in Amorphous Polymers and Other Materials, Elsevier, Amsterdam, 1978.
- 12(a)
T. Hibma,
P. Pfluger,
H. R. Zeller,
H. Kuzmany,
M. Mehring,
S. Roth
Electronic Properties of Polymers and Related Compounds,
Springer, Berlin,
1985,
pp. 317–326, and references therein.
10.1007/978-3-642-82569-9_57 Google Scholar(b) B. A. Newman, P. Chen. K. D. Pae, J. I. Scheinbeim, J. Appl. Phys. 1980, 51, 5161–5164, and references therein. (c) A. R. Blythe, Electrical Properties of Polymers, Cambridge University Press, Cambridge, 1979, Chap. 6. (d) K. N. Mathes, Encycl. Polym. Sci. Eng. 1986, 5, 512–593. (e) H. Block, Adv. Polym. Sci. 1979, 33, 93–167, and references therein.
- 13(a) C. Ye, N. Minami, T. J. Marks, J. Yang, G. K. Wong, Macromolecules 1988, 21 2901–2904. (b) in ref. [2f], pp. 173–183.
- 14(a) T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, D. J. Williams, Nature (London) 1993, 367, 49–50, and references therein. (b) W. M. K. P. Wijekoon, B. Asghorian, P. N. Prasad, T. Geisler, S. Rosenkilde, Thin Solid Films. 1992, 208, 137–144. (c) V. A. Howarth, N. Asai, N. Kishii, I. Fujiwara, Appl. Phys. Lett. 1992, 61, 1616–1618. (d) C. Bosshard, M. Küpfer, P. Günter, C. Pasquier, S. Zahir, M. Seifert, Appl. Phys. Lett. 1990, 56, 1204–1206, and references therein. (e) R. Popvitz-Biro, K. Hill, E. M. Landau, M. Lahav, L. Leiserowitz, J. Sagiv, H. Haiung, G. R. Meredith, H. Vanherzeele, J. Am. Chem. Soc. 1988, 110, 2672–2674.
- 15(a) D. J. Williams, T. L. Penner, J. S. Schildkraut, N. Tillman, A. Ulman, Adv. Mater. 1993, 5, 195–218. (b) C. Bubeck, F. Effenberger, L. Häussling, D. Neher, C.-P. Niesert, H. Ringsdorf, Adv. Mater. 1992, 4, 413–416. (c) G. J. Ashwell, R. C. Hargreaves, C. E. Baldwin, G. S. Bahra, C. R. Brown, Nature (London), 1992, 357, 393–395. (d) S. Allen, T. D. McLean, P. F. Gordon, B. D. Bothwell, P. Robein, I. Ledoux, Proc. SPIE Int. Soc. Opt. Eng. 1988, 971, 206–215. (e) J. S. Schildkraut, T. L. Penner, C. S. Willand, A. Ulman, Opt. Lett. 1988, 13, 134–136. (f) D. Lupo, W. Prass, U. Schunemann, A. Laschewsky, H. Ringsdorf, I. Ledoux, J. Opt. Soc. Am. B, 1988, 5, 300–308. (g) The most promising of the Eastman Kodak chromphoric LB films irreversibly lose their SHG capacity at 50 °C: T. L. Penner, Fall MRS Meeting, Boston, MA, November 1992, Symposium R.
- 16 C. Ye, T. J. Marks, J. Yang, G. K. Wong, Macromolecules 1987, 20, 2322–2324.
- 17(a) M. A. Hubbard, N. Minami, C. Ye, T. J. Marks, J. Yang, G. K. Wong, Proc. SPIE Int. Soc. Opt. Eng. 1988, 971, 136–143. (b) M. A. Hubbard, T. J. Marks, J. Yang, G. K. Wong, Chem. Mater. 1989, 1, 167–169. (c) J. Park, T. J. Marks, J. Yang, G. K. Wong, Chem. Mater. 1990, 2, 229–231.
- 18 D. Li, M. A. Ratner, T. J. Marks, C. Zhang, J. Yang, G. K. Wong, J. Am. Chem. Soc. 1990, 112, 7389–7390.
- 19(a) D. R. Kanis, M. A. Ratner, T. J. Marks, M. C. Zerner, Chem. Mater. 1991, 3, 19–21. (b) D. R. Kanis, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 1990, 112, 8203–8204. (c) Int. J. Quantum Chem. 1992, 43, 61–82.
- 20(a) S. DiBella, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 1992, 114, 5842–5849. (b) S. DiBella, I. L. Fragala, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 1992, 114, 5842–5849. (b) S. DiBella, I. L. Fragala, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 1993, 115, 682–686.
- 21(a) C. H. Wang, J. Chem. Phys. 1993, 98, 3457–3462. (b) H. W. Guan, C. H. Wang, J. Chem. Phys. 1993, 98, 3463–3468.
- 22(a) E. J. Moskala, D. F. Varnell, M. M. Coleman, Polymer, 1985, 26, 228–234. (b) A. Nakamura, T. Hatakeyama, H. Hatakeyama, Polymer, 1981, 22, 473–476. (c) T. Hatakeyama, A. Nakamura, H. Hatakeyama, Polymer, 1978, 19, 593–594.
- 23(a) M. Barzoukas, D. Josse, P. Fremaux, J. Zyss, J. F. Nicoud, J. Morely, J. Opt. Soc. Am. B, 1987, 4, 977–986. (b) J. Zyss, J. F. Nicoud, M. Coquillay, J. Chem. Phys. 1984, 81, 4160–4167.
- 24(a) M. A. Firestone, J. Park, N. Minami, M. A. Ratner, J. Yang, T. J. Marks, W. Lin, G. K. Wong, Macromolecules, in press. (b) M. A. Firestone, M. A. Ratner, T. J. Marks, W. Lin, G. K. Wong, Macromolecules, in press. (c) E. T. Crumpler, D. Li, T. J. Marks, M. A. Ratner, W. Lin, G. K. Wong, Abst. 207th Nat. Meet. Am. Chem. Soc., San Diego, CA, USA, 1994, INOR 521. (d) E. T. Crumpler, T. J. Marks, W. Lin, G. K. Wong, Chem. Mater., submitted.
- 25 R. B. Comizzoli, J. Electrochem. Soc. 1987, 134, 424–429.
- 26(a) G. H. Fredrickson, Annu. Rev. Phys. Chem. 1988, 39, 149–180. (b) G. H. Fredrickson, S. A. Brawer, J. Chem. Phys. 1986, 84, 3351–3366. (c) M. F. Shlesinger, E. W. Montroll, Proc. Natl. Acad. Sci USA, 1984, 81, 1280–1283. (d) E. W. Montroll, J. T. Bendler, J. Stat. Phys. 1984, 34, 129–162. (e) G. Williams, D. C. Watts, Trans. Faraday Soc. 1970, 66, 80–87.
- 27(a) G. T. Boyd, C. V. Francis, J. E. Trend, D. A. Ender, J. Opt. Soc. Am. B, 1991, 8, 887–894. (b) K. D. Singer, L. A. King, J. Appl. Phys. 1991, 70, 3251–3255. (c) W. Köhler, D. R. Robello, C. S. Willand, D. J. Williams, Macromolecules 1991, 24, 4589–4599. (d) A. Dhinojwala, G. K. Wong, J. M. Torkelson, Macromolecules 1992, 25, 7395–7397. (e) M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, W. Volksen, J. Appl. Phys. 1993, 73, 8471–8479, and references therein.
- 28(a) W.-E. Yu, C. S. P. Sung, R. E. Robertson, Macromolecules 1988, 21, 355–364, and references therein. (b) W.-E. Yu, C. S. P. Sung, Macromolecules 1988, 21, 365–371. (c) C. S. P. Sung, E. Pyun, H.-L. Sun, Macromolecules 1986, 19, 3922–3929.
- 29 D. Aycock, V. Abolins, D. M. White, Encycl. Polym. Sci. Eng. 1985-, Vol. 13, 1988, pp. 1–30, and references therein.
- 30 D. M. White, J. Org. Chem. 1969, 34, 297–303.
- 31 I. Cabasso, J. Jagur-Grodzinski, D. Vofsi, J. Appl. Polym. Sci. 1974, 18, 1969–1986.
- 32 D. Dai, T. J. Marks, J. Yang, P. M. Lundquist, G. K. Wong, Macromolecules 1990, 23, 1894–1896.
- 33 For some recent, complementary thermal crosslinking approaches, see: (a) D. Jungbauer, B. Reck, R. Twieg, D. Y. Yoon, C. G. Willson, J. D. Swalen, Appl. Phys. Lett. 1990, 56, 2610–2612. (b) M. Chen, L. Yu, L. Dalton, Y. Shi, W. H. Steier, Macromolecules 1991, 24, 5421–5428. (c) L. Yu, W. Chan, S. Dikshit, Z. Bao, Y. Shi, W. H. Steier, Appl. Phys. Lett. 1992, 60, 1655–1657. (d) R. J. Jeng, Y. M. Chen, A. K. Jain, J. Kumar, S. K. Tripathy, Chem. Mater. 1992, 4, 1141–1144. (e) L.-T. Cheng, R. P. Foss, G. R. Meredith, W. Tam, F. C. Zumsteg, Mater. Res. Soc. Symp. Proc. 1992, 247, 27–38. (f) S. Marturankakul, J. I. Chen, L. Li, R. J. Jeng, J. Kumar, S. K. Tripathy, Chem. Mater. 1993, 5, 592–594. (g) P. Ranon, Y. Shi, W. H. Steier, C. Xu, B. Wu, L. R. Dalton, Appl. Phys. Lett. 1993, 62, 2605–2607. (h) C. V. Francis, K. M. White, G. T. Boyd, R. S. Moshrefzadeh, S. K. Mohapatra, M. D. Radcliffe, J. E. Trend, R. C. Williams, Chem. Mater. 1993, 5, 506–510. (i) C. Xu, B. Wu, O. Todorova, L. R. Dalton, Y. Shi, P. M. Ranon, W. H. Steier, Macromolecules 1993, 26, 5303–5309. (j) G. Topolsky, J-P. Lecomte, R. Meyrueix, Macromolecules 1993, 26, 7383–7385. (k) Z. Peng, L. Yu, Macromolecules 1994, 27, 2638–2640.
- 34(a) F. Lohse, Makromol. Chem. Macro. Symp. 1987, 7, 1–16. (b) E. F. Oleinik, Adv. Polym. Sci. 1986, 80, 49–99. (c) K. Dušek, Adv. Polym. Sci. 1986, 78, 1–59. (d) B. A. Rozenberg, Adv. Polym. Sci. 1986, 75, 113–165.
- 35(a) X. Wang, J. K. Gillham, J. Coatings Technol. 1992, 64, 37–45. (b) G. Wisanrakkit, J. K. Gillham, J. Coatings Technol. 1990, 62, 35–50.
- 36(a) L. V. McAdams, J. A. Gannon, Encycl. Polym. Sci. Eng. Vol. 6, 1986, pp. 322–382, and references therein. (b) E. Mertzel, J. L. Koenig, Adv. Polym. Sci. 1986, 75, 74–112.
- 37(a) Y. Jin, S. H. Carr, T. J. Marks, W. Lin, G. K. Wong, Chem. Mater. 1992, 4, 963–965. (b) Y. Jin, S. H. Carr, T. J. Marks, W. Lin, G. K. Wong, Mats. Res. Soc. Sympos. Proc. 1992, 247, 39–42. (c) Y. Jin, T. J. Marks, W. Lin, G. K. Wong, Macromolecules, submitted.
- 38(a) A. Rudin, The Elements of Polymer Science and Engineering, Academic Press, New York, 1982, Chapt. 11. (b) J. T. Rabek, Experimental Methods in Polymer Chemistry, Wiley, New York, 1980, Chapt. 32.
- 39(a) M. A. Hubbard, T. J. Marks, W. Lin, G. K. Wong, Chem. Mater. 1992, 4, 965–968. (b) M. A. Hubbard, T. J. Marks, W. Lin, G. K. Wong, Chem. Mater., submitted.
- 40(a) D. Li, T. J. Marks, M. A. Ratner, J. Phys. Chem. 1992, 96, 4325–4336. (b) Mater. Res. Soc. Symp. Proc. 1989, 134, 665–671.
- 41(a) T. Takekoshi, Adv. Polym. Sci. 1990, 94, 1–25. (b) B. Sillion in Comprehensive Polymer Science, (Eds.: G. Allen, J. C. Bevington), Pergamon, Oxford, 1989, Chapt. 30. (c) J. E. White, Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 395–400. (d) C. E. Sroog, Macromol. Rev. 1976, 11, 161–203. (e) J. V. Crivello, J. Polym. Sci. 1973, 11, 1185–1193.
- 42(a) K. K. Chakravorty, Appl. Phys. Lett. 1992, 61, 1163–1165. (b) C. P. Chien, K. K. Chakravorty, Proc. SPIE Int. Soc. Opt. Eng. 1990, 1323, 338–347. (c) R. Reuter, H. Franke, C. Feger, Appl. Opt. 1988, 27, 4565–4571. (d) R. Selvraj, H. T. Lin, J. F. McDonald, J. Lightwave Technol. 1988, 6, 1034–1039. (e) R. D. Rossi Engineered Materials Handbook, Vol. 3, ASM, Materials Park, OH, USA, 1992, p. 151–162.
- 43(a) S. Ermer, J. F. Valley, R. Lytel, G. F. Lipscomb, T. E. VanEck, D. G. Girton, Appl. Phys. Lett. 1992, 61, 2272–2275. (b) J. F. Valley, J. W. Wu, S. Ermer, M. Stiller, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, R. Lytel, Appl. Phys. Lett. 1992, 60, 160–163. (c) J. W. Wu, J. F. Valley, M. Stiller, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, R. Lytel, Proc. SPIE Int. Soc. Opt. Eng. 1991, 1560, 196–205. (d) J. W. Wu, E. S. Binkley, J. T. Kenney, R. Lytel, A. F. Garito, J. Appl. Phys. 1991, 69, 7366–7369. (e) J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, R. Lytel, Appl. Phys. Lett. 1991, 58, 225–227. (f) M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, C. A. Walsh, Appl. Phys. Lett. 1992, 61, 1626–1629.
- 44(a) J. T. Lin, M. A. Hubbard, T. J. Marks, W. Lin, G. K. Wong, Chem. Mater. 1992, 4, 1148–1150. (b) J.-F. Wang, M. A. Hubbard, J. Lin, T. J. Marks, W. P. Lin, G. K. Wong, Proc. SPIE Int. Soc. Opt. Eng. 1993, 2025, 62–68. (c) J.-F. Wang, T. J. Marks, W. Lin, G. K. Wong, Chem. Mater., submitted.
- 45(a) R. J. Morgan, R. J. Jurek, T. Donnellan, A. Yen, Polym. Prepr. 1992, 33, 426–427, and references therein. (b) S. Zahir, M. A. Chaudhari, J. King, Makromol. Chem. Macromol. Symp. 1989, 25, 141–154.
- 46 J.-F. Wang, T. J. Marks, W. Lin, G. K. Wong, Macromolecules, submitted.
- 47(a) M. Pomerantz, A. Segmuller, L. Netzer, J. Sagiv, Thim Solid Films, 1985, 132, 153–162. (b) L. Netzer, R. Iscovici, J. Sagiv, Thim Solid Films, 1983, 100, 67–76. (c) L. Netzer, R. Iscovici, J. Sagiv, Thim Solid Films, 1983, 99, 235–241.
- 48(a) R. Maoz, J. Sagiv, Langmuir 1987, 3, 1034–1044, 1045–1051. (b) C. R. Kessel, S. Grankci, Langmuir 1991, 7, 532–538.
- 49(a) S. R. Wasserman, G. M. Whitesides, I. M. Tidswell, B. M. Ocko, P. S. Pershan, J. D. Axe, J. Am. Chem. Soc. 1989, 111, 5852–5861. (b) S. R. Wasserman, Y.-T. Tao, G. M. Whitesides, Langmuir 1989, 5, 1074–1087.
- 50(a) N. Tillman, A. Ulman, T. L. Penner, Langmuir 1989, 5, 101–111. (b) A. Ulman, N. Tillman, Langmuir 1989, 5, 1418–1420. (c) N. Tillman, A. Ulman, J. S. Schildkruat, T. L. Penner, J. Am. Chem. Soc. 1988, 110, 6136–6144. (d) A. Ulman, Adv. Mater. 1990, 2, 573–582, and references therein. (e) An Introduction to Ultrathin Organic Films, Part 3, Academic Press, New York, 1991.
- 51 For complementary self-assembly approaches, see: (a) H. E. Katz, W. L. Wilson, G. Scheller, J. Am. Chem. Soc. 1994, 116, 6636–6640. (b) H. E. Katz, G. Scheller, T. J. Putvinski, M. L. Schilling, W. L. Wilson, C. E. D. Chidsey, Science 1991, 254, 1485–1487. (c) H. Lee, L. J. Kepley, H.-G. Hong, T. E. Mallouk, J. Am. Chem. Soc. 1988, 110, 618–620. (d) H. Lee, L. J. Kepley, H.-G. Hong, S. Akhter, T. E. Mallouk, J. Phys. Chem. 1988, 92, 2597–2601.
- 52(a) D. Li, T. J. Marks, C. Zhang, J. Yang, G. K. Wong, Proc. SPIE Int. Soc. Opt. Eng. 1991, 1560, 341–347. (b) D. S. Allan, F. Kubota, T. J. Marks, C. Zhang, W. P. Lin, G. K. Wong, Proc. SPIE Int. Soc. Opt. Eng. 1993, 2025, 362–369. (c) D. S. Allan, F. Kubota, Y. Orihaski, D. Li, T. J. Marks, T. G. Zhang, W. P. Lin, G. K. Wong, Polym. Prepr. 1991, 32, 86–87. (d) D. S. Allan, F. Kubota, A. K. Kakkar, T. J. Marks, T. G. Zhang, W. P. Lin, M. Shin, G. K. Wong, P. Dutta, Mater. Res. Soc. Symp. Proc. 1992, 247, 779–786. (e) A. K. Kakkar, S. Yitzchaik, S. B. Roscoe, F. Kubota, D. S. Allan, T. J. Marks, W. Lin, G. Wong, Langmuir, 1993, 9, 388–390. (f) D. Li, D. C. Smith, B. I. Swanson, J. D. Farr, M. T. Paffett, M. E. Hawley, Chem. Mater., 1992, 4, 1047–1053.
- 53(a) Y. R. Shen, The Principles of Nonlinear Optics, Wiley, New York, Chapt. 2. (b) T. G. Zhang, C. H. Zhang, G. K. Wong, J. Opt. Soc. Am. B, 1990, 7, 902–907.
- 54 F. Kubota, D. S. Allan, T. J. Marks, unpublished.
- 55 S. Yitzchaik, A. K. Kakkar, T. J. Marks, unpublished.
- 56 S. Yitzchaik, S. B. Roscoe, D. S. Allan, A. K. Kakkar, T. J. Marks, Z. Xu, T. G. Zhang, W. Lin, G. K. Wong, J. Phys. Chem. 1993, 97, 6958–6960.
- 57(a) R. C. Thomas, L. Sun, R. M. Crooks, A. J. Ricco, Langmuir 1991, 7, 620–622. (b) C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitsides, R. G. Nuzzo, J. Am. Chem. Soc. 1989, 111, 321–335.
- 58(a) P. N. T. van Velzen, J. J. Ponjee, A. Benninghoven, Appl. Surf. Sci. 1987, 37, 147–159. (b) A. W. Adamson, Physical Chemistry of Surfaces, 5th ed. Wiley, New York, 1990, Chapt. 14, 15.
- 59 G. J. Ashwell, R. C. Hargreaves, C. E. Baldwin, G. S. Bahra, C. R. Brown Nature (London) 1992, 357, 393–395.
- 60 P. M. Lundquist, S. Yitzchaik, T. G. Zhang, D. R. Kanis, M. A. Ratner, T. J. Marks, G. K. Wong Appl. Phys. Lett. 1994, 64, 2194–2196.
- 61(a) J. Zyss, Nonlinear Opt. 1991, 1, 3–15. (b) J. L. Brédas, F. Meyers, B. M. Pierce, J. Zyss, J. Am. Chem. Soc. 1992, 114, 4928–4929.