Elucidating the Correlation Between the Redox Potential, Spin State, and Crystal Structure in a Series of Ferrous Complexes with Redox-Active Ligands
This article relates to:
-
Outside Front Cover: Elucidating the Correlation Between the Redox Potential, Spin State and Crystal Structure in a Series of Ferrous Complexes With Redox-Active Ligands
- Saioa Cobo,
- Livia Getzner,
- Yasmine Remili,
- Zakaria Ziani,
- Laure Vendier,
- William Nicolazzi,
- Aurelian Rotaru,
- Haizhu Yu,
- Gabor Molnar,
- Azzedine Bousseksou,
- Angewandte Chemie
- First Published online: July 16, 2025
Livia Getzner
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
Search for more papers by this authorYasmine Remili
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
Search for more papers by this authorZakaria Ziani
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
Search for more papers by this authorLaure Vendier
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
Search for more papers by this authorWilliam Nicolazzi
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
Search for more papers by this authorAurelian Rotaru
Department of Electrical Engineering and Computer Science & Research Center MANSiD, Stefan cel Mare University of Suceava, University St., No. 13, Suceava, 720229 Romania
Search for more papers by this authorHaizhu Yu
Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601 China
Search for more papers by this authorGábor Molnár
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
Search for more papers by this authorCorresponding Author
Saioa Cobo
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Azzedine Bousseksou
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
E-mail: [email protected], [email protected]
Search for more papers by this authorLivia Getzner
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
Search for more papers by this authorYasmine Remili
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
Search for more papers by this authorZakaria Ziani
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
Search for more papers by this authorLaure Vendier
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
Search for more papers by this authorWilliam Nicolazzi
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
Search for more papers by this authorAurelian Rotaru
Department of Electrical Engineering and Computer Science & Research Center MANSiD, Stefan cel Mare University of Suceava, University St., No. 13, Suceava, 720229 Romania
Search for more papers by this authorHaizhu Yu
Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601 China
Search for more papers by this authorGábor Molnár
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
Search for more papers by this authorCorresponding Author
Saioa Cobo
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Azzedine Bousseksou
LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Accurately predicting the spin crossover (SCO) temperature (T1/2) in spin crossover compounds remains a significant challenge due to their extreme sensitivity to minor variations in ligand and crystal structure. In this study, we uncover a critical link between the redox potential of ligands and SCO behavior within Hofmann-type clathrates {Fe(R-pbpy⁺)₂[μ₂-M(CN)₄]₂} (R = electron-donating or electron-withdrawing groups, M = Pd or Pt). Through precise tuning of the ligands' electronic properties, we establish a correlation between redox potential, space group, and SCO temperature, explained by an adaptation of Marcus theory of electron transfer. These findings not only provide a deeper understanding of the factors governing SCO behavior but also present a promising strategy for the rational design of SCO materials with tailored properties.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202506965-sup-0001-SupMat.docx1.2 MB | Supporting Information |
ange202506965-sup-0002-SupMat.zip3.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Bousseksou, G. Molnár, L. Salmon, W. Nicolazzi, Chem. Soc. Rev. 2011, 40, 3313.
- 2P. Gütlich, H. A. Goodwin, Spin Crossover in Transition Metal Compounds III. Vol. 235, Springer, Berlin, Heidelberg 2004.
10.1007/b96439 Google Scholar
- 3P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. 1994, 33, 2024–2054.
- 4L. Cambi, L. Szegö, Berichte der deutschen chemischen Gesellschaft (A and B Series) 1931, 64, 2591–2598.
10.1002/cber.19310641002 Google Scholar
- 5L. Cambi, L. Szegö, Berichte der deutschen chemischen Gesellschaft (A and B Series) 1933, 66, 656–661.
10.1002/cber.19330660508 Google Scholar
- 6E. König, K. Madeja, Chem. Commun. 1966, 61–62.
- 7W. A. Baker, Jr., H. M. Bobonich, Inorg. Chem. 1964, 3, 1184–1188.
- 8M. A. Halcrow, Coord. Chem. Rev. 2009, 253, 2493–2514.
- 9Z.-P. Ni, J.-L. Liu, M.d. N. Hoque, W. Liu, J.-Y. Li, Y.-C. Chen, M.-L. Tong, Coord. Chem. Rev. 2017, 335, 28–43.
- 10V. Niel, J. M. Martinez-Agudo, M. C. Muñoz, A. B. Gaspar, J. A. Real, Inorg. Chem. 2001, 40, 3838–3839.
- 11O. Kahn, J. Kröber, C. Jay, Adv. Mater. 1992, 4, 718–728.
- 12O. Kahn, Curr. Opin. Solid State Mat. Sci. 1996, 1, 547–554.
- 13E. Coronado, J. R. Galán-Mascarós, M. Monrabal-Capilla, J. García-Martínez, P. Pardo-Ibáñez, Adv. Mater. 2007, 19, 1359–1361.
- 14J. R. Galán-Mascarós, E. Coronado, A. Forment-Aliaga, M. Monrabal-Capilla, E. Pinilla-Cienfuegos, M. Ceolin, Inorg. Chem. 2010, 49, 5706–5714.
- 15l. A. Gural’skiy, C. M. Quintero, G. Molnár, I. O. Fritsky,L. Salmon, A. Bousseksou, Chem. Eur. J. 2012, 18, 9946–9954
- 16F. Volatron, et al. Inorg. Chem. 2008, 47, 6584–6586.
- 17L. Salmon, G. Molnár, D. Zitouni, C. Quintero, C. Bergaud, J.-C. Micheau, A. Bousseksou, J. Mater. Chem. 2010, 20, 5499.
- 18L. Salmon, L. Catala, Comptes Rendus Chim. 2018, 21, 1230–1269.
- 19G. Agustí, S. Cobo, A. B. Gaspar, G. Molnár, N. O. Moussa, P. Á. Szilágyi, V. Pálfi, C. Vieu, M. Carmen Muñoz, J. A. Real, A. Bousseksou, Chem. Mater. 2008, 20, 6721–6732.
- 20C. Bartual-Murgui, V. Rubio-Giménez, M. Meneses-Sánchez, F. J. Valverde-Muñoz, S. Tatay, C. Martí-Gastaldo, M. C. Muñoz, J. A. Real, ACS Appl. Mater. Interfaces 2020, 12, 29461–29472.
- 21S. Cobo, G. Molnár, J. A. Real, A. Bousseksou, Angew. Chem. Int. Ed. 2006, 45, 5786–5789.
- 22T. Mallah, M. Cavallini, Comptes Rendus Chim. 2018, 21, 1270–1286.
- 23D. Maskowicz, R. Jendrzejewski, W. Kopec, M. Gazda, J. Karczewski, P. Niedzialkowski, A. Kleibert, C. A. F. Vaz, Y. Garcia, M. Sawczak, Materials 2021, 14, 7135.
- 24G. Molnár, S. Cobo, J. A. Real, F. Carcenac, E. Daran, C. Vieu, A. Bousseksou, Adv. Mater. 2007, 19, 2163–2167.
- 25K. Otsubo, T. Haraguchi, O. Sakata, A. Fujiwara, H. Kitagawa, J. Am. Chem. Soc. 2012, 134, 9605–9608.
- 26H. Soyer, C. Mingotaud, M.-L. Boillot, P. Delhaes, Langmuir 1998, 14, 5890–5895.
- 27V. Shalabaeva, S. Rat, M. D. Manrique-Juarez, A.-C. Bas, L. Vendier, L. Salmon, G. Molnár, A. Bousseksou, J. Mater. Chem. C 2017, 5, 4419–4425.
- 28K. Bairagi, O. Iasco, A. Bellec, A. Kartsev, D. Li, J. Lagoute, C. Chacon, Y. Girard, S. Rousset, F. Miserque, Y. J. Dappe, A. Smogunov, C. Barreteau, M.-L. Boillot, T. Mallah, V. Repain, Nat. Commun. 2016, 7, 12212.
- 29E. Ludwig, H. Naggert, M. Kalläne, S. Rohlf, E. Kröger, A. Bannwarth, A. Quer, K. Rossnagel, L. Kipp, F. Tuczek, Angew. Chem. Int. Ed. 2014, 53, 3019–3023.
- 30B. Warner, J. C. Oberg, T. G. Gill, F. El Hallak, C. F. Hirjibehedin, M. Serri, S. Heutz, M.-A. Arrio, P. Sainctavit, M. Mannini, G. Poneti, R. Sessoli, P. Rosa, J. Phys. Chem. Lett. 2013, 4, 1546–1552.
- 31L. J. K. Cook, R. Mohammed, G. Sherborne, T. D. Roberts, S. Alvarez, M. A. Halcrow, Coord. Chem. Rev. 2015, 289–290, 2–12.
10.1016/j.ccr.2014.08.006 Google Scholar
- 32L. J. K. Cook, R. Kulmaczewski, R. Mohammed, S. Dudley, S. A. Barrett, M. A. Little, R. J. Deeth, M. A. Halcrow, Angew. Chem. Int. Ed. 2016, 55, 4327–4331.
- 33S. Rodríguez-Jiménez, L. Bondì, M. Yang, A. L. Garden, S. Brooker, Chem. Asian J. 2019, 14, 1158–1166.
- 34M. Marchivie, P. Guionneau, J.-F. Létard, D. Chasseau, Acta Crystallogr. B 2005, 61, 25–28.
- 35M. A. Halcrow, I. Capel Berdiell, C. M. Pask, R. Kulmaczewski, Inorg. Chem. 2019, 58, 9811–9821.
- 36T. Shiga, R. Saiki, L. Akiyama, R. Kumai, D. Natke, F. Renz, J. M. Cameron, G. N. Newton, H. Oshio, Angew. Chem. Int. Ed. 2019, 58, 5658–5662.
- 37R. Saiki, H. Miyamoto, H. Sagayama, R. Kumai, G. N. Newton, T. Shiga, H. Oshio, Dalton Trans. 2019, 48, 3231–3236.
- 38D. Vidal, J. Cirera, J. Ribas-Arino, Phys. Chem. Chem. Phys. 2023, 25, 12490–12499.
- 39L. Getzner, D. Paliwoda, L. Vendier, L. M. Lawson-Daku, A. Rotaru, G. Molnár, S. Cobo, A. Bousseksou, Nat. Commun. 2024, 15, 7192.
- 40L. Getzner, L. Vendier, G. Molnár, A. Rotaru, S. Cobo, A. Bousseksou, Angew. Chem. Int. Ed. 2024, 63, e202412525.
- 41A. Y. Chan, A. Ghosh, J. T. Yarranton, J. Twilton, J. Jin, D. M. Arias-Rotondo, H. A. Sakai, J. K. McCusker, D. W. C. MacMillan, Science 2023, 382, 191–197.
- 42L.i Yuan, L. Wang, A. R. Garrigues, L.i Jiang, H. V. Annadata, M. Anguera Antonana, E. Barco, C. A. Nijhuis, Nature Nanotech 2018, 13, 322–329.
- 43A. Atxabal, T. Arnold, S. Parui, S. Hutsch, E. Zuccatti, R. Llopis, M. Cinchetti, F. Casanova, F. Ortmann, L. E. Hueso, Nat. Commun. 2019, 10, 2089.
- 44J. Wang, T. Ding, K. Gao, L. Wang, P. Zhou, K. Wu, Nat. Commun. 2021, 12, 6333.
- 45Y. Shi, Y. Chang, K. Lu, Z. Chen, J. Zhang, Y. Yan, D. Qiu, Y. Liu, M. A. Adil, W. Ma, X. Hao, L. Zhu, Z. Wei, Nat. Commun. 2022, 13, 3256.
- 46D. Godovsky, Org. Electron. 2011, 12, 190–194.
- 47A. Bousseksou, M. Verelst, H. Constant-Machado, G. Lemercier, J.-P. Tuchagues, F. Varret, Inorg. Chem. 1996, 35, 110–115.
- 48A. Bousseksou, H. Constant-Machado, F. Varret, J. Phys. I France 1995, 5, 747–760.
- 49J.-P. Tuchagues, A. Bousseksou, G. Molnár, J. J. McGarvey, F. Varret, in Spin Crossover in Transition Metal Compounds III Springer, Berlin, Heidelberg 2004, p. 84–103.
10.1007/b95423 Google Scholar
- 50G. Lemercier, M. Verelst, A. Bousseksou, F. Varret, J.-P. Tuchagues, Magnetism: A Supramolecular Function 335–356 Springer, Dordrecht 1996.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.