Synthesis of γ-Amino Amides by Iridium-Catalyzed Enantioselective Hydroamination of Internal Alkenes Directed by an Amide
Yu-Wen Sun
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXin Sun
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHao-Tian Tan
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Bi-Jie Li
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032 China
Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYu-Wen Sun
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorXin Sun
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHao-Tian Tan
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Bi-Jie Li
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032 China
Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorAbstract
Catalytic regio- and enantioselective hydroamination of less activated internal alkenes presents a challenge to synthetic chemists due to their low reactivity and the difficulty in simultaneously controlling regio- and enantioselectivities. Here, we report an iridium-catalyzed enantioselective hydroamination of internal alkenes directed by an amide. The amide group on the alkene effectively directs the catalyst to overcome the low reactivity and control the regioselectivity and the enantiotopic face selection. Phthalimide serves as the amination agent, which could be readily removed to afford a primary amine. This coordination assistance enables hydroamination to occur selectively at the remote position with up to 97 % ee, delivering valuable enantio-enriched γ-amino acid derivatives that are otherwise challenging to access.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202422944-sup-0001-misc_information.pdf20.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. C. Nugent, Chiral amine synthesis: methods, developments and applications, John Wiley & Sons, 2010;
10.1002/9783527629541 Google Scholar
- 1bS. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451–3479;
- 1cJ. Mayol-Llinàs, A. Nelson, W. Farnaby, A. Ayscough, Drug Discovery Today 2017, 22, 965–969.
- 2
- 2aT. C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010, 352, 753–819;
- 2bJ. H. Xie, S. F. Zhu, Q. L. Zhou, Chem. Rev. 2011, 111, 1713–1760;
- 2cJ. Gui, C. M. Pan, Y. Jin, T. Qin, J. C. Lo, B. J. Lee, S. H. Spergel, M. E. Mertzman, W. J. Pitts, T. E. La Cruz, M. A. Schmidt, N. Darvatkar, S. R. Natarajan, P. S. Baran, Science 2015, 348, 886–891;
- 2dM. T. Pirnot, Y. M. Wang, S. L. Buchwald, Angew. Chem. Int. Ed. 2016, 55, 48–57;
- 2eA. J. Musacchio, B. C. Lainhart, X. Zhang, S. G. Naguib, T. C. Sherwood, R. R. Knowles, Science 2017, 355, 727–730;
- 2fO. I. Afanasyev, E. Kuchuk, D. L. Usanov, D. Chusov, Chem. Rev. 2019, 119, 11857–11911;
- 2gA. Trowbridge, S. M. Walton, M. J. Gaunt, Chem. Rev. 2020, 120, 2613–2692;
- 2hA. Cabré, X. Verdaguer, A. Riera, Chem. Rev. 2022, 122, 269–339.
- 3
- 3aT. E. Müller, M. Beller, Chem. Rev. 1998, 98, 675–703;
- 3bS. Hong, T. J. Marks, Acc. Chem. Res. 2004, 37, 673–686;
- 3cK. C. Hultzsch, Adv. Synth. Catal. 2005, 347, 367–391;
- 3dT. E. Müller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev. 2008, 108, 3795–3892;
- 3eK. D. Hesp, M. Stradiotto, ChemCatChem 2010, 2, 1192–1207;
- 3fL. J. Gooßen, L. Huang, M. Arndt, K. Gooßen, H. Heydt, Chem. Rev. 2015, 115, 2596–2697;
- 3gM. Manßen, L. L. Schafer, Chem. Soc. Rev. 2020, 49, 6947–6994.
- 4S. Ma, J. F. Hartwig, Acc. Chem. Res. 2023, 56, 1565–1577.
- 5
- 5aD. Milstein, A. L. Casalnuovo, J. C. Calabrese, J. Am. Chem. Soc. 1988, 110, 6738–6744;
- 5bR. Dorta, P. Egli, F. Zurcher, A. Togni, J. Am. Chem. Soc. 1997, 119, 10857–10858;
- 5cJ. Zhou, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 12220–12221;
- 5dC. S. Sevov, J. Zhou, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 11960–11963;
- 5eH. L. Teng, Y. Luo, B. Wang, L. Zhang, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2016, 55, 15406–15410;
- 5fZ. Li, J. Zhao, B. Sun, T. Zhou, M. Liu, S. Liu, M. Zhang, Q. Zhang, J. Am. Chem. Soc. 2017, 139, 11702–11705;
- 5gM. Wang, J. C. Simon, M. Xu, S. A. Corio, J. S. Hirschi, V. M. Dong, J. Am. Chem. Soc. 2023, 145, 14573–14580.
- 6
- 6aM. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc. 2000, 122, 9546–9547;
- 6bO. Löber, M. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc. 2001, 123, 4366–4367;
- 6cJ. Pawlas, Y. Nakao, M. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 3669–3679;
- 6dK. L. Butler, M. Tragni, R. A. Widenhoefer, Angew. Chem. Int. Ed. 2012, 51, 5175–5178;
- 6eM. L. Cooke, K. Xu, B. Breit, Angew. Chem. Int. Ed. 2012, 51, 10876–10879;
- 6fS. Pan, K. Endo, T. Shibata, Org. Lett. 2012, 14, 780–783;
- 6gK. Xu, Y. H. Wang, V. Khakyzadeh, B. Breit, Chem. Sci. 2016, 7, 3313–3316;
- 6hN. J. Adamson, E. Hull, S. J. Malcolmson, J. Am. Chem. Soc. 2017, 139, 7180–7183;
- 6iX. H. Yang, A. Lu, V. M. Dong, J. Am. Chem. Soc. 2017, 139, 14049–14052;
- 6jX.-H. Yang, V. M. Dong, J. Am. Chem. Soc. 2017, 139, 1774–1777;
- 6kS. Park, S. J. Malcolmson, ACS Catal. 2018, 8, 8468–8476;
- 6lG. Tran, W. Shao, C. Mazet, J. Am. Chem. Soc. 2019, 141, 14814–14822;
- 6mJ. Long, P. Wang, W. Wang, Y. Li, G. Yin, iScience 2019, 22, 369–379;
- 6nA. Y. Jiu, H. S. Slocumb, C. S. Yeung, X. H. Yang, V. M. Dong, Angew. Chem. Int. Ed. 2021, 60, 19660–19664;
- 6oE. Damer, B. Breit, ChemistryEurop 2024, 2, e202400037.
- 7
- 7aZ. Zhang, S. D. Lee, R. A. Widenhoefer, J. Am. Chem. Soc. 2009, 131, 5372–5373;
- 7bA. L. Reznichenko, H. N. Nguyen, K. C. Hultzsch, Angew. Chem. Int. Ed. 2010, 49, 8984–8987;
- 7cA. R. Ickes, S. C. Ensign, A. K. Gupta, K. L. Hull, J. Am. Chem. Soc. 2014, 136, 11256–11259;
- 7dC. S. Sevov, J. Zhou, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 3200–3207;
- 7eS. C. Ensign, E. P. Vanable, G. D. Kortman, L. J. Weir, K. L. Hull, J. Am. Chem. Soc. 2015, 137, 13748–13751;
- 7fE. P. Vanable, J. L. Kennemur, L. A. Joyce, R. T. Ruck, D. M. Schultz, K. L. Hull, J. Am. Chem. Soc. 2019, 141, 739–742;
- 7gS. Ma, H. Fan, C. S. Day, Y. Xi, J. F. Hartwig, J. Am. Chem. Soc. 2022;
- 7hS. Ma, Y. Xi, H. Fan, S. Roediger, J. F. Hartwig, Chem 2022, 8, 532–542.
- 8Y. Xi, S. Ma, J. F. Hartwig, Nature 2020, 588, 254–260.
- 9
- 9aY. Miki, K. Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2013, 52, 10830–10834;
- 9bJ. S. Bandar, M. T. Pirnot, S. L. Buchwald, J. Am. Chem. Soc. 2015, 137, 14812–14818;
- 9cY. Yang, S. L. Shi, D. Niu, P. Liu, S. L. Buchwald, Science 2015, 349, 62–66;
- 9dY. Xi, T. W. Butcher, J. Zhang, J. F. Hartwig, Angew. Chem. Int. Ed. 2016, 55, 776–780;
- 9eR. Y. Liu, S. L. Buchwald, Acc. Chem. Res. 2020, 53, 1229–1243;
- 9fL. Meng, J. Yang, M. Duan, Y. Wang, S. Zhu, Angew. Chem. Int. Ed. 2021, 60, 23584–23589;
- 9gC. Lee, H. J. Kang, H. Seo, S. Hong, J. Am. Chem. Soc. 2022, 144, 9091–9100.
- 10J. A. Gurak, K. S. Yang, Z. Liu, K. M. Engle, J. Am. Chem. Soc. 2016, 138, 5805–5808.
- 11S. W. Kim, T. Wurm, G. A. Brito, W.-O. Jung, J. R. Zbieg, C. E. Stivala, M. J. Krische, J. Am. Chem. Soc. 2018, 140, 9087–9090.
- 12A. T. Ho, E. P. Vanable, C. S. Miguel, K. L. Hull, Chem. Commun. 2024, 60, 1615–1618.
- 13R. I. McDonald, G. Liu, S. S. Stahl, Chem. Rev. 2011, 111, 2981–3019.
- 14
- 14aZ. X. Wang, X. Y. Bai, B. J. Li, Chin. J. Chem . 2019, 37, 1174–1180;
- 14bW. Zhao, H.-X. Lu, W.-W. Zhang, B.-J. Li, Acc. Chem. Res. 2023, 56, 308–321.
- 15
- 15aP. S. Hanley, J. F. Hartwig, J. Am. Chem. Soc. 2011, 133, 15661–15673;
- 15bP. S. Hanley, J. F. Hartwig, Angew. Chem. Int. Ed. 2013, 52, 8510–8525.
- 16
- 16aZ.-X. Wang, B.-J. Li, J. Am. Chem. Soc. 2019, 141, 9312–9320;
- 16bW. Zhao, K.-Z. Chen, A.-Z. Li, B.-J. Li, J. Am. Chem. Soc. 2022, 144, 13071–13078.
- 17A. M. Johns, N. Sakai, A. Ridder, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 9306–9307.
- 18
- 18aE. Larionov, H. Li, C. Mazet, Chem. Commun. 2014, 50, 9816–9826;
- 18bH. Li, C. Mazet, Acc. Chem. Res. 2016, 49, 1232–1241;
- 18cH. Sommer, F. Juliá-Hernández, R. Martin, I. Marek, ACS Cent. Sci. 2018, 4, 153–165;
- 18dS. Ma, H. Fan, C. S. Day, Y. Xi, J. F. Hartwig, J. Am. Chem. Soc. 2023, 145, 3875–3881.
- 19
- 19aV. Kotov, C. C. Scarborough, S. S. Stahl, Inorg. Chem. 2007, 46, 1910–1923;
- 19bD. G. Kohler, S. N. Gockel, J. L. Kennemur, P. J. Waller, K. L. Hull, Nat. Chem. 2018, 10, 333–340.
- 20
- 20aA. H. Hoveyda, D. A. Evans, G. C. Fu, Chem. Rev. 1993, 93, 1307–1370;
- 20bG. Rousseau, B. Breit, Angew. Chem. Int. Ed. 2011, 50, 2450–2494;
- 20cS. Bhadra, H. Yamamoto, Chem. Rev. 2018, 118, 3391–3446;
- 20dJ. Jeon, C. Lee, I. Park, S. Hong, Chem. Rec. 2021, 21, 3613–3627.
- 21
- 21aJ. E. Gómez, W. Guo, S. Gaspa, A. W. Kleij, Angew. Chem. Int. Ed. 2017, 56, 15035–15038;
- 21bB. Hu, L. Deng, Angew. Chem. Int. Ed. 2018, 57, 2233–2237;
- 21cZ.-P. Yang, D. J. Freas, G. C. Fu, J. Am. Chem. Soc. 2021, 143, 2930–2937.
- 22K. Yamakawa, K. Sakamoto, T. Nishimura, Chem. Commun. 2023, 59, 12871–12874.
- 23J.-H. Xie, Q.-L. Zhou, Acc. Chem. Res. 2008, 41, 581–593.
- 24
- 24aW. Yang, Y. Li, J. Zhu, W. Liu, J. Ke, C. He, Chem. Sci. 2020, 11, 10149–10158;
- 24bZ. X. Wang, B. J. Li, Angew. Chem., Int. Ed. 2022, 61, e202201099.
- 25C. Chen, W. Guo, D. Qiao, J. Zhou, Y. Wang, S. Zhu, CCS Chemistry 2024, 6, 898–904.
- 26M. Tuomainen, O. Kärkkäinen, J. Leppänen, S. Auriola, M. Lehtonen, M. J. Savolainen, K. Hermansen, U. Risérus, B. Åkesson, I. Thorsdottir, M. Kolehmainen, M. Uusitupa, K. Poutanen, U. Schwab, K. Hanhineva, Am. J. Clin. Nutr. 2019, 110, 1108–1118.
- 27B. Lippert, B. W. Metcalf, M. J. Jung, P. Casara, Eur. J. Biochem. 1977, 74, 441–445.
- 28
- 28aD. A. Evans, G. C. Fu, J. Am. Chem. Soc. 1991, 113, 4042–4043;
- 28bD. A. Evans, G. C. Fu, A. H. Hoveyda, J. Am. Chem. Soc. 1992, 114, 6671–6679.
- 29
- 29aA. K. Fazlur-Rahman, M. A. Bennett, J. Organomet. Chem. 2022, 968–969, 122349;
- 29bB. B. C. Peters, P. G. Andersson, J. Am. Chem. Soc. 2022, 144, 16252–16261.
- 30
- 30aS. E. Wheeler, J. Am. Chem. Soc. 2011, 133, 10262–10274;
- 30bC. R. Swartz, S. R. Parkin, J. E. Bullock, J. E. Anthony, A. C. Mayer, G. G. Malliaras, Org. Lett. 2005, 7, 3163–3166.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.