Boosting One- and Two-Photon Excited Fluorescence of Interpenetrated Tetraphenylethene-Based Metal–Organic Frameworks (TPE-MOFs) by Linker Installation
Huihui He
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
These authors contributed equally to this work.
Search for more papers by this authorJi Li
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China
These authors contributed equally to this work.
Search for more papers by this authorJiayi Zhuang
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
These authors contributed equally to this work.
Search for more papers by this authorJinyi Huang
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China
Search for more papers by this authorYuxuan Meng
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China
Search for more papers by this authorXi Lin
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China
Search for more papers by this authorProf. Dr. Zhangwen Wei
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Liangliang Zhang
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yu Fang
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Mei Pan
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
Search for more papers by this authorHuihui He
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
These authors contributed equally to this work.
Search for more papers by this authorJi Li
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China
These authors contributed equally to this work.
Search for more papers by this authorJiayi Zhuang
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
These authors contributed equally to this work.
Search for more papers by this authorJinyi Huang
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China
Search for more papers by this authorYuxuan Meng
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China
Search for more papers by this authorXi Lin
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China
Search for more papers by this authorProf. Dr. Zhangwen Wei
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Liangliang Zhang
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yu Fang
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Mei Pan
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
Search for more papers by this authorAbstract
Immobilizing organic chromophores within the rigid framework of metal-organic frameworks (MOFs) augments fluorescence by effectively curtailing molecular motions. Yet, the substantial interspaces and free volumes inherent to MOFs can undermine photoluminescence efficiency, as they partially constrain intramolecular dynamics. In this study, we achieved optimization of both one- and two-photon excited fluorescence by incorporating linkers into an interpenetrated tetraphenylethene-based MOF (TPE-MOF). This linker installation strategy enables fine-tuning of both crystal packing density and ligand conformations. Strikingly, the desolvated MOFs exhibit remarkable two-photon absorption (TPA) cross-sections, reaching an impressive 8801 GM. Consequently, these materials demonstrate exceptional performance in one- and two-photon excited cellular imaging of HepG2 cells. Our work introduces an innovative approach to enhancing two-photon excited fluorescence (TPEF) and broadens the scope of research into one- and two-photon excited fluorescence (1/2 PEF).
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420912-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Zheng, H. Zhu, S.-C. Chen, C. Tang, E. Ma, X. Chen, Nat. Photonics 2013, 7, 234–239.
- 2R. Medishetty, J. K. Zaręba, D. Mayer, M. Samoć, R. A. Fischer, Chem. Soc. Rev. 2017, 46, 4976–5004.
- 3C.-X. Chen, S.-Y. Yin, Z.-W. Wei, Q.-F. Qiu, N.-X. Zhu, Y.-N. Fan, M. Pan, C.-Y. Su, Angew. Chem. Int. Ed. 2019, 58, 14379–14385.
- 4H. S. Quah, W. Chen, M. K. Schreyer, H. Yang, M. W. Wong, W. Ji, J. J. Vittal, Nat. Commun. 2015, 6, 7954.
- 5R. Medishetty, V. Nalla, L. Nemec, S. Henke, D. Mayer, H. Sun, K. Reuter, R. A. Fischer, Adv. Mater. 2017, 29, 1605637.
- 6S.-C. Wang, Q.-S. Zhang, Z. Wang, S.-Q. Guan, X.-D. Zhang, X.-H. Xiong, M. Pan, Angew. Chem. Int. Ed. 2023, 62, e202315382.
- 7A. Burns, H. Ow, U. Wiesner, Chem. Soc. Rev. 2006, 35, 1028–1042.
- 8S. W. Thomas, G. D. Joly, T. M. Swager, Chem. Rev. 2007, 107, 1339–1386.
- 9N. B. Shustova, A. F. Cozzolino, M. Dinca, J. Am. Chem. Soc. 2012, 134, 19596–19599.
- 10N. B. Shustova, B. D. McCarthy, M. Dinca, J. Am. Chem. Soc. 2011, 133, 20126–20129.
- 11N. B. Shustova, T. C. Ong, A. F. Cozzolino, V. K. Michaelis, R. G. Griffin, M. Dinca, J. Am. Chem. Soc. 2012, 134, 15061–15070.
- 12X. Guo, N. Zhu, S. P. Wang, G. Li, F. Q. Bai, Y. Li, Y. Han, B. Zou, X. B. Chen, Z. Shi, S. Feng, Angew. Chem. Int. Ed. 2020, 59, 19716–19721.
- 13S.-C. Wang, Q.-S. Zhang, Z. Wang, L. Zheng, X.-D. Zhang, Y.-N. Fan, P.-Y. Fu, X.-H. Xiong, M. Pan, Angew. Chem. Int. Ed. 2022, 61, e202211356.
- 14D. C. Mayer, J. K. Zaréba, G. Raudaschl-Sieber, A. Pöthig, M. Chołuj, R. Zaleśny, M. Samoć, R. A. Fischer, Chem. Mater. 2020, 32, 5682–5690.
- 15R. Medishetty, L. Nemec, V. Nalla, S. Henke, M. Samoc, K. Reuter, R. A. Fischer, Angew. Chem. Int. Ed. 2017, 56, 14743–14748.
- 16Z. Duan, Y. Li, X. Xiao, X. Huang, X. Li, Y. Li, C. Zhang, H. Zhang, L. Li, Z. Lin, Y. Zhao, W. Huang, ACS Appl. Mater. Interfaces 2020, 12, 18715–18722.
- 17Y. Guo, X. Feng, T. Han, S. Wang, Z. Lin, Y. Dong, B. Wang, J. Am. Chem. Soc. 2014, 136, 15485–15488.
- 18Z. Guo, G. Li, H. Wang, J. Zhao, Y. Liu, H. Tan, X. Li, P. J. Stang, X. Yan, J. Am. Chem. Soc. 2021, 143, 9215–9221.
- 19F. Hu, Z. Di, P. Lin, P. Huang, M. Wu, F. Jiang, M. Hong, Cryst. Growth Des. 2018, 18, 576–580.
- 20Z. Hu, G. Huang, W. P. Lustig, F. Wang, H. Wang, S. J. Teat, D. Banerjee, D. Zhang, J. Li, Chem. Commun. 2015, 51, 3045–3048.
- 21M. J. Hurlock, L. Hao, K. W. Kriegsman, X. Guo, M. O′Keeffe, Q. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 40155–40155.
- 22X. Y. Lou, Y. W. Yang, Aggregate 2020, 1, 19–30.
- 23Q. Y. Li, Z. Ma, W. Q. Zhang, J. L. Xu, W. Wei, H. Lu, X. Zhao, X. J. Wang, Chem. Commun. 2016, 52, 11284–11287.
- 24L. Ma, X. Feng, S. Wang, B. Wang, Mater. Chem. Front. 2017, 1, 2474–2486.
- 25N. Liu, Z. Chen, W. Fan, J. Su, T. Lin, S. Xiao, J. Meng, J. He, J. J. Vittal, J. Jiang, Angew. Chem. Int. Ed. 2022, 61, e202115205.
- 26D. C. Mayer, A. Manzi, R. Medishetty, B. Winkler, C. Schneider, G. Kieslich, A. Pothig, J. Feldmann, R. A. Fischer, J. Am. Chem. Soc. 2019, 141, 11594–11602.
- 27M. Gupta, Z. Zhu, D. Kottilil, B. B. Rath, W. Tian, Z.-K. Tan, X. Liu, Q−H. Xu, W. Ji, J. J. Vittal, ACS Appl. Mater. Interfaces 2021, 13, 60163–60172.
- 28R. Abazari, E. Yazdani, M. Nadafan, A. M. Kirillov, J. Gao, A. M. Z. Slawin, C. L. Carpenter-Warren, Inorg.Chem. 2021, 60, 9700–9708.
- 29Z. Chen, D. Xu, M. Zhu, Y. Wang, J. Feng, C. Shu, S. Xiao, J. Meng, J. He, Nanophotonics 2023, 12, 3781–3791.
- 30B. B. Rath, D. Kottilil, W. Ji, J. J. Vittal, ACS Appl. Mater. Interfaces 2023, 15, 26939–26945.
- 31H. S. Quah, V. Nalla, K. Zheng, C. A. Lee, X. Liu, J. J. Vittal, Chem. Mater. 2017, 29, 7424–7430.
- 32S. N. Deger, Y. Cui, J. Warnan, R. A. Fischer, F. Šanda, J. Hauer, A. Pöthig, ACS Appl. Opt. Mater. 2024, 2, 1770–1779.
- 33C.-X. Chen, Z.-W. Wei, C.-C. Cao, S.-Y. Yin, Q.-F. Qiu, N.-X. Zhu, Y.-Y. Xiong, J.-J. Jiang, M. Pan, C.-Y. Su, Chem. Mater. 2019, 31, 5550–5557.
- 34S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.-C. Zhou, Adv. Mater. 2018, 30, 1704303.
- 35L. Feng, K.-Y. Wang, G. S. Day, M. R. Ryder, H.-C. Zhou, Chem. Rev. 2020, 120, 13087–13133.
- 36Z. Wei, Z. Y. Gu, R. K. Arvapally, Y. P. Chen, R. N. McDougald, Jr., J. F. Ivy, A. A. Yakovenko, D. Feng, M. A. Omary, H. -C. Zhou, J. Am. Chem. Soc. 2014, 136, 8269–8276.
- 37Q. Zhang, J. Su, D. Feng, Z. Wei, X. Zou, H. -C. Zhou, J. Am. Chem. Soc. 2015, 137, 10064–10067.
- 38S. S. Meng, M. Xu, H. Guan, C. Chen, P. Cai, B. Dong, W. S. Tan, Y. H. Gu, W. Q. Tang, L. G. Xie, S. Yuan, Y. Han, X. Kong, Z. Y. Gu, Nat. Commun. 2023, 14, 5347.
- 39Z. Wang, C.-Y. Zhu, Z.-W. Wei, Y.-N. Fan, M. Pan, Chem. Mater. 2019, 32, 841–848.
- 40C.-X. Chen, Z.-W. Wei, Y.-N. Fan, P.-Y. Su, Y.-Y. Ai, Q.-F. Qiu, K. Wu, S.-Y. Yin, M. Pan, C.-Y. Su, Chem 2018, 4, 2658–2669.
- 41X.-H. Wu, P. Luo, Z. Wei, Y.-Y. Li, R.-W. Huang, X.-Y. Dong, K. Li, S.-Q. Zang, B. Z. Tang, Adv. Sci. 2019, 6, 1801304.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.