CO2-Driven Oxygen Vacancy Diffusion and Healing on TiO2(110) at Ambient Pressure
Young Jae Kim
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
These authors contributed equally: Young Jae Kim and Hyuk Choi.
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Validation (equal), Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorHyuk Choi
Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134 Republic of Korea
These authors contributed equally: Young Jae Kim and Hyuk Choi.
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Validation (equal), Visualization (equal), Writing - original draft (equal)
Search for more papers by this authorDaeho Kim
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Contribution: Formal analysis (supporting), Validation (supporting), Visualization (supporting)
Search for more papers by this authorYongman Kim
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Contribution: Investigation (supporting), Methodology (supporting), Validation (supporting)
Search for more papers by this authorKi-jeong Kim
Beamline Research Division, Pohang Acceleration Laboratory (PAL), Pohang, 37673 Republic of Korea
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorJeongjin Kim
Beamline Research Division, Pohang Acceleration Laboratory (PAL), Pohang, 37673 Republic of Korea
Contribution: Formal analysis (supporting), Investigation (supporting)
Search for more papers by this authorCorresponding Author
Geoff Thornton
Department of Chemistry and London Centre for Nanotechnology, University College London, London, WC1H 0AJ United Kingdom
Contribution: Validation (supporting), Visualization (supporting), Writing - original draft (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Hyun You Kim
Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134 Republic of Korea
Contribution: Conceptualization (equal), Formal analysis (equal), Funding acquisition (equal), Validation (equal), Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Jeong Young Park
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Methodology (equal), Validation (equal), Visualization (equal), Writing - original draft (equal)
Search for more papers by this authorYoung Jae Kim
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
These authors contributed equally: Young Jae Kim and Hyuk Choi.
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Validation (equal), Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorHyuk Choi
Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134 Republic of Korea
These authors contributed equally: Young Jae Kim and Hyuk Choi.
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Validation (equal), Visualization (equal), Writing - original draft (equal)
Search for more papers by this authorDaeho Kim
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Contribution: Formal analysis (supporting), Validation (supporting), Visualization (supporting)
Search for more papers by this authorYongman Kim
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Contribution: Investigation (supporting), Methodology (supporting), Validation (supporting)
Search for more papers by this authorKi-jeong Kim
Beamline Research Division, Pohang Acceleration Laboratory (PAL), Pohang, 37673 Republic of Korea
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorJeongjin Kim
Beamline Research Division, Pohang Acceleration Laboratory (PAL), Pohang, 37673 Republic of Korea
Contribution: Formal analysis (supporting), Investigation (supporting)
Search for more papers by this authorCorresponding Author
Geoff Thornton
Department of Chemistry and London Centre for Nanotechnology, University College London, London, WC1H 0AJ United Kingdom
Contribution: Validation (supporting), Visualization (supporting), Writing - original draft (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Hyun You Kim
Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134 Republic of Korea
Contribution: Conceptualization (equal), Formal analysis (equal), Funding acquisition (equal), Validation (equal), Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Jeong Young Park
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Methodology (equal), Validation (equal), Visualization (equal), Writing - original draft (equal)
Search for more papers by this authorAbstract
Understanding how TiO2 interacts with CO2 at the molecular level is crucial in the CO2 reduction toward value-added energy sources. Here, we report in situ observations of the CO2 activation process on the reduced TiO2(110) surface at room temperature using ambient pressure scanning tunneling microscopy. We find that oxygen vacancies (Vo) diffuse dynamically along the bridging oxygen (Obr) rows of the TiO2(110) surface under ambient CO2(g) environments. This physical phenomenon exclusively occurs when the oxygen abstracted upon CO2 dissociation instantly occupies the Vo sites of Obr rows on the TiO2(110), whereas the TiO2(110) surface without the Vo only allows CO2 physisorption on five-fold-coordinated Ti4+ sites. Synchrotron-based ambient pressure X-ray photoelectron spectroscopy also identifies the changes in surface oxidation states of TiO2(110) by the healing of Vo sites or the CO2 physisorption under ambient CO2(g) conditions. Density functional theory calculations propose a mechanism of the CO2-driven Vo diffusion and the physisorbed CO2 configurations. Our combined results unravel the critical role of defect sites on TiO2 in determining the elementary step of CO2 activation during chemical reactions.
Conflict of Interests
The authors declare no conflict of interest
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420449-sup-0001-misc_information.pdf6.2 MB | Supporting Information |
ange202420449-sup-0001-Movie_S1.mp42.3 MB | Supporting Information |
ange202420449-sup-0001-Movie_S2.mp45.4 MB | Supporting Information |
ange202420449-sup-0001-Movie_S3.mp46.4 MB | Supporting Information |
ange202420449-sup-0001-Movie_S4.mp49.6 MB | Supporting Information |
ange202420449-sup-0001-Movie_S5.mp46.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 1979, 277, 637–638;
- 1bS. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. Engl. 2013, 52, 7372–7408.
- 2
- 2aU. Diebold, Surf. Sci. Rep. 2003, 48, 53–229;
- 2bZ. Dohnálek, I. Lyubinetsky, R. Rousseau, Prog. Surf. Sci. 2010, 85, 161–205;
- 2cC. Lun Pang, R. Lindsay, G. Thornton, Chem. Soc. Rev. 2008, 37, 2328–2353.
- 3D. P. Acharya, N. Camillone, P. Sutter, J. Phys. Chem. C 2011, 115, 12095–12105.
- 4
- 4aJ. Lee, D. C. Sorescu, X. Deng, K. D. Jordan, J. Phys. Chem. Lett. 2011, 2, 3114–3117;
- 4bS. Tan, Y. Zhao, J. Zhao, Z. Wang, C. Ma, A. Zhao, B. Wang, Y. Luo, J. Yang, J. Hou, Phys. Rev. B 2011, 84;
- 4cJ. Lee, D. C. Sorescu, X. Deng, J. Am. Chem. Soc. 2011, 133, 10066–10069.
- 5R. C. E. Hamlyn, M. Mahapatra, D. C. Grinter, F. Xu, S. Luo, R. M. Palomino, S. Kattel, I. Waluyo, P. Liu, D. J. Stacchiola, S. D. Senanayake, J. A. Rodriguez, Phys. Chem. Chem. Phys. 2018, 20, 13122–13126.
- 6
- 6aT. L. Thompson, O. Diwald, J. T. Yates, J. Phys. Chem. B 2003, 107, 11700–11704;
- 6bR. S. Smith, Z. Li, L. Chen, Z. Dohnalek, B. D. Kay, J. Phys. Chem. B 2014, 118, 8054–8061;
- 6cM. A. Henderson, Surf. Sci. 1998, 400, 203–219.
- 7
- 7aX. Lin, Y. Yoon, N. G. Petrik, Z. Li, Z.-T. Wang, V.-A. Glezakou, B. D. Kay, I. Lyubinetsky, G. A. Kimmel, R. Rousseau, Z. Dohnálek, J. Phys. Chem. C 2012, 116, 26322–26334;
- 7bL. F. Liao, C. F. Lien, D. L. Shieh, M. T. Chen, J. L. Lin, J. Phys. Chem. B 2002, 106, 11240–11245.
- 8
- 8aM. Salmeron, B. Eren, Chem. Rev. 2021, 121, 962–1006;
- 8bJ. Kim, H. Choi, D. Kim, J. Y. Park, ACS Catal. 2021, 11, 8645–8677;
- 8cY. Kim, Y. J. Kim, J. Y. Park, Chem. Phys. Rev. 2023, 4;
- 8dG. A. Somorjai, Surf. Sci. 1995, 335, 10–22.
- 9
- 9aE. Wahlstrom, E. K. Vestergaard, R. Schaub, A. Ronnau, M. Vestergaard, E. Laegsgaard, I. Stensgaard, F. Besenbacher, Science 2004, 303, 511–513;
- 9bJ. Wintterlin, S. Volkening, T. V. W. Janssens, T. Zambelli, G. Ertl, Science 1997, 278, 1931–1934;
- 9cY. J. Kim, D. Kim, Y. Kim, Y. Jeong, B. Jeong, J. Y. Park, Int. J. Mol. Sci. 2023, 24;
- 9dZ. Zhu, F. F. Tao, F. Zheng, R. Chang, Y. Li, L. Heinke, Z. Liu, M. Salmeron, G. A. Somorjai, Nano Lett. 2012, 12, 1491–1497;
- 9eJ. Kim, W. H. Park, W. H. Doh, S. W. Lee, M. C. Noh, J.-J. Gallet, F. Bournel, H. Kondoh, K. Mase, Y. Jung, B. S. Mun, J. Y. Park, Sci. Adv. 2018, 4.
- 10X. Cui, Z. Wang, S. Tan, B. Wang, J. Yang, J. G. Hou, J. Phys. Chem. C 2009, 113, 13204–13208.
- 11Z. Zhang, Q. Ge, S. C. Li, B. D. Kay, J. M. White, Z. Dohnalek, Phys. Rev. Lett. 2007, 99, 126105.
- 12
- 12aS. Tan, H. Feng, Y. Ji, Y. Wang, J. Zhao, A. Zhao, B. Wang, Y. Luo, J. Yang, J. G. Hou, J. Am. Chem. Soc. 2012, 134, 9978–9985;
- 12bS. Tan, H. Feng, Q. Zheng, X. Cui, J. Zhao, Y. Luo, J. Yang, B. Wang, J. G. Hou, J. Am. Chem. Soc. 2020, 142, 826–834.
- 13
- 13aW. J. Yin, M. Krack, B. Wen, S. Y. Ma, L. M. Liu, J. Phys. Chem. Lett. 2015, 6, 2538–2545;
- 13bD. C. Sorescu, J. Lee, W. A. Al-Saidi, K. D. Jordan, J. Chem. Phys. 2012, 137, 074704.
- 14
- 14aG. Ketteler, S. Yamamoto, H. Bluhm, K. Andersson, D. E. Starr, D. F. Ogletree, H. Ogasawara, A. Nilsson, M. Salmeron, J. Phys. Chem. C 2007, 111, 8278–8282;
- 14bR. Schaub, P. Thostrup, N. Lopez, E. Laegsgaard, I. Stensgaard, J. K. Norskov, F. Besenbacher, Phys. Rev. Lett. 2001, 87, 266104.
- 15
- 15aU. Diebold, J. Chem. Phys. 2017, 147, 040901;
- 15bZ. T. Wang, Y. G. Wang, R. Mu, Y. Yoon, A. Dahal, G. K. Schenter, V. A. Glezakou, R. Rousseau, I. Lyubinetsky, Z. Dohnalek, Proc. Natl. Acad. Sci. USA 2017, 114, 1801–1805.
- 16Y. Du, N. A. Deskins, Z. Zhang, Z. Dohnálek, M. Dupuis, I. Lyubinetsky, J. Phys. Chem. C 2008, 113, 666–671.
- 17L. E. Walle, A. Borg, P. Uvdal, A. Sandell, Phys. Rev. B 2012, 86.
- 18
- 18aD. Ferrah, A. R. Haines, R. P. Galhenage, J. P. Bruce, A. D. Babore, A. Hunt, I. Waluyo, J. C. Hemminger, ACS Catal. 2019, 9, 6783–6802;
- 18bJ. Kim, Y. Yu, T. W. Go, J. J. Gallet, F. Bournel, B. S. Mun, J. Y. Park, Nat. Commun. 2023, 14, 3273;
- 18cM. Favaro, H. Xiao, T. Cheng, W. A. Goddard, 3rd, J. Yano, E. J. Crumlin, Proc. Natl. Acad. Sci. USA 2017, 114, 6706–6711.
- 19J. Balajka, M. A. Hines, W. J. I. DeBenedetti, M. Komora, J. Pavelec, M. Schmid, U. Diebold, Science 2018, 361, 786–789.
- 20
- 20aD. C. Grinter, T. Woolcot, C. L. Pang, G. Thornton, J. Phys. Chem. Lett. 2014, 5, 4265–4269;
- 20bM. Aizawa, Y. Morikawa, Y. Namai, H. Morikawa, Y. Iwasawa, J. Phys. Chem. B 2005, 109, 18831–18838.
- 21
- 21aL. E. Walle, D. Ragazzon, A. Borg, P. Uvdal, A. Sandell, Surf. Sci. 2014, 621, 77–81;
- 21bX. Ma, Y. Shi, J. Liu, X. Li, X. Cui, S. Tan, J. Zhao, B. Wang, J. Am. Chem. Soc. 2022, 144, 13565–13573.
- 22E. Lira, S. Wendt, P. Huo, J. O. Hansen, R. Streber, S. Porsgaard, Y. Wei, R. Bechstein, E. Laegsgaard, F. Besenbacher, J. Am. Chem. Soc. 2011, 133, 6529–6532.
- 23
- 23aW.-J. Yin, B. Wen, C. Zhou, A. Selloni, L.-M. Liu, Surf. Sci. Rep. 2018, 73, 58–82;
- 23bX. Mao, X. Lang, Z. Wang, Q. Hao, B. Wen, Z. Ren, D. Dai, C. Zhou, L.-M. Liu, X. Yang, J. Phys. Chem. Lett. 2013, 4, 3839–3844;
- 23cK. Morita, T. Shibuya, K. Yasuoka, J. Phys. Chem. C 2017, 121, 1602–1607.
- 24J. Kim, H. Ha, W. H. Doh, K. Ueda, K. Mase, H. Kondoh, B. S. Mun, H. Y. Kim, J. Y. Park, Nat. Commun. 2020, 11, 5649.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.