Rational Molecular Design for Balanced Locally Excited and Charge- Transfer Nature for Two-Photon Absorption Phenomenon and Highly Efficient TADF-Based OLEDs
Gomathi Vinayakam Mageswari
Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Contribution: Formal analysis (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Prof. Youhei Chitose
Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395 Japan
Contribution: Conceptualization (equal), Supervision (equal), Validation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorProf. Youichi Tsuchiya
Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Contribution: Supervision (supporting)
Search for more papers by this authorProf. Ja-Hon Lin
Department of Electro-Optical Engineering, Advanced Nanophotonics Technology Laboratory, National Taipei University of Technology, Taipei, 10608 Taiwan
Search for more papers by this authorCorresponding Author
Prof. Chihaya Adachi
Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Contribution: Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorGomathi Vinayakam Mageswari
Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Contribution: Formal analysis (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Prof. Youhei Chitose
Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395 Japan
Contribution: Conceptualization (equal), Supervision (equal), Validation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorProf. Youichi Tsuchiya
Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Contribution: Supervision (supporting)
Search for more papers by this authorProf. Ja-Hon Lin
Department of Electro-Optical Engineering, Advanced Nanophotonics Technology Laboratory, National Taipei University of Technology, Taipei, 10608 Taiwan
Search for more papers by this authorCorresponding Author
Prof. Chihaya Adachi
Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395 Japan
Contribution: Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorAbstract
The pursuit of highly efficient thermally activated delayed fluorescence (TADF) emitters with two-photon absorption (2PA) character is hampered by the concurrent achievement of a small singlet-triplet energy gap (ΔEST) and high photoluminescence quantum yield (ΦPL). Here, by introducing a terephthalonitrile unit into a sterically crowded donor-π-donor structure, inducing a hybrid electronic excitation character, we designed unique TADF emitters possessing 2PA ability. This rational molecular design was achieved through a main π-conjugated donor-acceptor-donor backbone in line with locally excited feature renders a large oscillator strength and transition dipole moment, maintaining a high 2PA cross-section value. The ancillary N-donor-acceptor-donor with charge transfer character highly balances the TADF phenomenon by minimizing ΔEST. A near-unity ΦPL value with a large radiative decay rate over an order of magnitude higher than the intersystem crossing rate and a high horizontal orientation ratio of 0.95 were simultaneously attained for TPCz2NP. The organic light-emitting diodes fabricated with this material exhibit a high maximum external quantum efficiency of 25.4 % with an elevated 2PA cross-section (σ2) value up to 143 GM at 850 nm. These findings offer a venue for designing high-performance TADF emitters with exceptional performance inclusive of 2PA properties, expanding for future functional material design.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420417-sup-0001-misc_information.pdf5.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913–915;
- 1bM. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444.
- 2
- 2aB. Madushani, M. Mamada, K. Goushi, T. B. Nguyen, H. Nakanotani, H. Kaji, C. Adachi, Sci. Rep. 2023, 13, 7644;
- 2bZ. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915–1016.
- 3
- 3aH. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature. 2012, 492, 234–238;
- 3bB. Valeur, M. N. Berberan-Santos, J. Chem. Educ. 2011, 88, 731–738;
- 3cG. N. Lewis, D. Lipkin, T. T. Magel, J. Am. Chem. Soc. 1941, 63, 3005–3018.
- 4
- 4aH. Nakanotani, Y. Tsuchiya, C. Adachi, Chem. Lett. 2021, 50, 938–948;
- 4bN. Aizawa, A. Matsumoto, T. Yasuda, Sci. Adv. 2021, 7, aebe5769;
- 4cC. A. Parker, C. G. Hatchard, Trans. Faraday Soc. 1961, 57, 1894–1904;
- 4dH. Beens, A. Weller, Acta Phys. Pol. 1968, 34, 593;
- 4eB. Frederichs, H. Staerk, Chem. Phys. Lett. 2008, 460, 116.
- 5
- 5aJ. S. Wilson, N. Chawdhury, M. R. A. Al-Mandhary, M. Younus, M. S. Khan, P. R. Raithby, A. Köhler, R. H. Friend, J. Am. Chem. Soc. 2001, 123, 9412–9417;
- 5bFernando B. Dias, Konstantinos N. Bourdakos, Vygintas Jankus, Kathryn C. Moss, Kiran T. Kamtekar, Vandana Bhalla, José Santos, Martin R. Bryce, Andrew P. Monkman, Adv. Mater. 2013, 25, 3707–3714; Santos, Martin R. Bryce, Andrew P. Monkman, Adv. Mater. 2013, 25, 3707–3714.
- 6
- 6aP. K. Samanta, D. Kim, V. Coropceanu, J. L. Brédas, J. Am. Chem. Soc. 2017, 139, 4042–4051;
- 6bH. Noda, H. Nakanotani, C. Adachi, Sci. Adv. 2018, 4, eaaao6910;
- 6cY. Im, M. Kim, Y. J. Cho, J. A. Seo, K. S. Yook, J. Y. Lee, Chem. Mater. 2017, 29, 1946–1963;
- 6dT. Zhao, S. Jiang, Y. Wang, J. Hu, F. L. Lin, L. Meng, P. Gao, X. L. Chen, C. Z. Lu, Appl. Mater. Interf. 2023, 15, 30543–30552;
- 6eQ. Zhang, D. Tsang, H. Kuwabara, Y. Hatae, B. Li, T. Takahashi, S. Y. Lee, T. Yasuda, C. Adachi, Adv. Mater. 2015, 27, 2096–2100.
- 7
- 7aU. Balijapalli, Y. T. Lee, B. S. B. Karunathilaka, G. Tumen-Ulzii, M. Auffray, Y. Tsuchiya, H. Nakanotani, C. Adachi, Angew. Chem. Int. Ed. 2021, 60, 19364–19373;
- 7bZ. Yang, N. Qiu, X. Dong, J. Li, P. Zou, D. Yang, D. Ma, B. Z. Tang, Z. Zhao, Adv. Optical. Mater. 2024, 12, 2302677;
- 7cU. Balijapalli, R. Nagata, N. Yamada, H. Nakanotani, M. Tanaka, A. D'Aléo, V. Placide, M. Mamada, Y. Tsuchiya, C. Adachi, Angew. Chem. Int. Ed. 2021, 60, 8477–8482;
- 7dH. Nakanotani, K. Masui, J. Nishide, T. Shibata, C. Adachi, Sci. Rep. 2013, 3, 2127;
- 7eR. J. Vázquez, J. H. Yun, A. K. Muthike, M. Howell, H. Kim, I. K. Madu, T. Kim, P. Zimmerman, J. Y. Lee, T. G. Iii, J. Am. Chem. Soc. 2020, 142, 8074–8079;
- 7fR. Braveenth, K. Raagulan, Y.-J. Kim, B.-M. Kim, Mater Adv 2023, 4, 374–388;
- 7gY. J. Cho, S. K. Jeon, B. D. Chin, E. Yu, J. Y. Lee, Angew. Chem. Int. Ed. 2015, 127, 5290–5293;
- 7hP. R. Bommireddy, C. S. Musalikunta, Y.-W. Lee, Y. Suh, M. Godumala, S.-H. Park, J. Mater. Chem. C. 2023, 11, 13603–13624;
- 7iW. Zeng, H. Y. Lai, W. K. Lee, M. Jiao, Y. J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K. T. Wong, C. C. Wu, C. Yang, Adv. Mater. 2018, 30, 1704961;
- 7jH. Lim, H. J. Cheon, S. J. Woo, S. K. Kwon, Y. H. Kim, J. J. Kim, Adv. Mater. 2020, 32, 2004083;
- 7kP. Khaummultri, P. Chasing, C. Chitpakdee, S. Namuangruk, T. Sudyoadsuk, V. Promarak, RSC Adv. 2021, 11, 24794–24806;
- 7lS. Wang, X. Yan, Z. Cheng, H. Zhang, Y. Liu, Y. Wang, Angew. Chem. Int. Ed. 2015, 127, 13260–13264.
- 8
- 8aF. Y. Meng, I. H. Chen, J. Y. Shen, K. H. Chang, T. C. Chou, Y. A. Chen, Y. T. Chen, C. L. Chen, P. T. Chou, Nat. Commun. 2022, 13, 797;
- 8bM. A. Bryden, E. Zysman-Colman, Chem. Soc. Rev. 2021, 50, 7587–7680;
- 8cW. Ma, Y. Su, Q. Zhang, C. Deng, L. Pasquali, W. Zhu, Y. Tian, P. Ran, Z. Chen, G. Yang, G. Liang, T. Liu, H. Zhu, P. Huang, H. Zhong, K. Wang, S. Peng, J. Xia, H. Liu, X. Liu, Y. M. Yang, Nat. Mater. 2022, 21, 210–216;
- 8dZ. Li, J. Lu, X. Li, Chem. Eur. J. 2024, 30, e202401001;
- 8eF. Fang, L. Zhu, M. Li, Y. Song, M. Sun, D. Zhao, J. Zhang, Adv. Sci. 2021, 8, 2102970.
- 9
- 9aZ. Chen, C. Dai, Q. Zhou, H. Du, J. Fan, S. Han, C. Zhang, Z. Pang, Dyes Pigm. 2021, 188, 109249;
- 9bH. Du, Y. Yu, Q. Zhou, C. Liu, J. Li, J. Ren, P. Zhang, J. Fan, Z. Pang, J. Phys. Chem. C. 2023, 127, 350–357.
- 10M. Pawlicki, H. A. Collins, R. G. Denning, H. L. Anderson, Angew. Chem. Int. Ed. 2009, 48, 3244–3266.
- 11T. He, C. Ren, Z. Li, S. Xiao, J. Li, X. Lin, C. Ye, J. Zhang, L. Guo, W. Hu, R. Chen, Appl. Phys. Lett. 2018, 112, 211102.
- 12Q. Zhao, H. Huang, F. Li, Chem. Soc. Rev. 2011, 40, 2508–2524.
- 13D. M. Mayder, C. J. Christopherson, W. L. Primrose, A. S. M. Lin, Z. M. Hudson, J. Mater. Chem. B. 2022, 10, 6496–6506.
- 14
- 14aJ. Zhang, W. Chen, S. Kalytchuk, K. F. Li, R. Chen, C. Adachi, Z. Chen, A. L. Rogach, G. Zhu, P. K. N. Yu, W. Zhang, K. W. Cheah, X. Zhang, C. S. Lee, Appl. Mater. Interf. 2016, 8, 11355–11365;
- 14bJ. R. Caine, P. Hu, A. T. Gogoulis, Z. M. Hudson, Acc. Mater. Res. 2023, 4, 879–891.
- 15Y. Tsuchiya, K. Ikesue, H. Nakanotani, C. Adachi, Chem. Commun. 2019, 55, 5215–5218.
- 16
- 16aF. Terenziani, C. Katan, E. Badaeva, S. Tretiak, M. Blanchara-Desce, Adv. Mater. 2008, 20, 4641–4678;
- 16bN. S. Makarov, M. Drobizhev, A. Rebane, Opt. Express 2008, 16, 4029–4047.
- 17C. H. Chen, Z. H. Luo, I. H. Huan, Y. H. Chen, T. S. Lim, Dyes Pigm. 2020, 175, 108143.
- 18T. L. Wu, S. H. Lo, Y. C. Chang, M. J. Huang, C. H. Cheng, Appl. Mater. Interf. 2019, 11, 10768–10776.
- 19R. Ahmed, A. K. Manna, J. Phys. Chem. A. 2022, 126, 4221–4229.
- 20M. A. El-Sayed, J. Chem. Phys. 1963, 38, 2834–2838.
- 21M. Hagai, N. Inai, T. Yasuda, K. J. Fujimoto, T. Yanai, Sci. Adv. 2024, 10, eadk3219.
- 22Y. Tsuchiya, N. Nakamura, S. Kakumachi, K. Kusuhara, C. Y. Chan, C. Adachi, Chem. Commun. 2022, 58, 11292–11295.
- 23O. Klement, Nature. 1951, 168, 162.
- 24H. S. Kim, S. R. Park, M. C. Suh, J. Phys. Chem. C 2017, 121, 13986–13997.
- 25L. Zhao, T. Komino, D. H. Kim, M. H. Sazzad, D. Pitrat, J. C. Mulatier, C. Andraud, J. C. Ribierre, C. Adachi, J. Mater. Chem. C 2016, 4, 11557–11565.
- 26Y. Tsuchiya, S. Diesing, F. Bencheikh, Y. Wada, P. L. dos Santos, H. Kaji, E. Zysman-Colman, I. D. W. Samuel, C. Adachi, J. Phys. Chem. A. 2021, 125, 8074–8089.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.