Dual Regulation of Sensitizers and Cluster Catalysts in Metal–Organic Frameworks to Boost H2 Evolution
Dr. Song Guo
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorChun-Wei Pan
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorMin Hou
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorYi-Tong Hou
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorShuang Yao
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorProf. Tong-Bu Lu
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Zhi-Ming Zhang
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorDr. Song Guo
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorChun-Wei Pan
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorMin Hou
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorYi-Tong Hou
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorShuang Yao
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorProf. Tong-Bu Lu
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Zhi-Ming Zhang
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorAbstract
Photocatalytic efficiency is closely correlated to visible-light absorption ability, electron transfer efficiency and catalytic center activity of photocatalysts, nevertheless, the concurrent management of these factors to improve photocatalytic efficiency remains underexplored. Herein, we proposed a sensitizer/catalyst dual regulation strategy on the polyoxometalate@Metal−Organic Framework (POM@MOF) molecular platform to construct highly efficient photocatalysts. Impressively, Ni−Sb9@UiO−Ir−C6, obtained by coupling strong sensitizing [Ir(coumarin 6)2(bpy)]+ with Ni−Sb9 POM with extremely exposed nickel site [NiO3(H2O)3], can drive H2 evolution with a turnover number of 326923, representing a record value among all the POM@MOF composite photocatalysts. This performance is over 34 times higher than that of the typical Ni4P2@UiO−Ir constructed from [Ir(ppy)2(bpy)]+ and Ni4P2 POM. Systematical investigations revealed that dual regulation of sensitizing and catalytic centers endowed Ni−Sb9@UiO−Ir−C6 with strong visible-light absorption, efficient inter-component electron transfer and high catalytic activity to concurrently promote H2 evolution. This work opens up a new avenue to develop highly active POM@MOF photocatalysts by dual regulation of sensitizing/catalytic centers at the molecular level.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420398-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aP. Zhou, I. A. Navid, Y. Ma, Y. Xiao, P. Wang, Z. Ye, B. Zhou, K. Sun, Z. Mi, Nature 2023, 613, 66–70;
- 1bJ. H. Kim, D. Hansora, P. Sharma, J.-W. Jang, J. S. Lee, Chem. Soc. Rev. 2019, 48, 1908–1971;
- 1cX.-B. Li, C.-H. Tung, L.-Z. Wu, Nat. Chem. Rev. 2018, 2, 160–173;
- 1dD. Gunawan, J. Zhang, Q. Li, C. Y. Toe, J. Scott, M. Antonietti, J. Guo, R. Amal, Adv. Mater. 2024, 2404618;
- 1eQ.-P. Zhao, W.-X. Shi, J. Zhang, Z.-Y. Tian, Z.-M. Zhang, P. Zhang, Y. Wang, S.-Z. Qiao, T.-B. Lu, Nat. Synth. 2024, 3, 497–506;
- 1fY. Qi, B. Zhang, G. Zhang, Z. Zheng, T. Xie, S. Chen, G. Ma, C. Li, K. Domen, F. Zhang, Joule 2024, 8, 193–203.
- 2
- 2aL. Buzzetti, G. E. M. Crisenza, P. Melchiorre, Angew. Chem. Int. Ed. 2019, 58, 3730–3747;
- 2bY. Liu, D. Huang, M. Cheng, Z. Liu, C. Lai, C. Zhang, C. Zhou, W. Xiong, L. Qin, B. Shao, Q. Liang, Coord. Chem. Rev. 2020, 409, 213220;
- 2cQ. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 2019, 31, 1901997;
- 2dK. Sun, Y. Qian, H. L. Jiang, Angew. Chem. Int. Ed. 2023, 62, e202217565.
- 3
- 3aJ. W. Wang, L. Jiang, H. H. Huang, Z. J. Han, G. F. Ouyang, Nat. Commun. 2021, 12, 4276;
- 3bP. Wang, S. Guo, H.-J. Wang, K.-K. Chen, N. Zhang, Z.-M. Zhang, T.-B. Lu, Nat. Commun. 2019, 10, 3155;
- 3cS. Guo, L. H. Kong, P. Wang, S. Yao, T. B. Lu, Z. M. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202206193;
- 3dY.-C. Luo, K.-L. Chu, J.-Y. Shi, D.-J. Wu, X.-D. Wang, M. Mayor, C.-Y. Su, J. Am. Chem. Soc. 2019, 141, 13057–13065.
- 4
- 4aC. Wang, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2012, 134, 7211–7214;
- 4bS. Qi, K. Zhu, T. Xu, H. Zhang, X. Guo, J. Wang, F. Zhang, X. Zong, Adv. Mater. 2024, 2403328;
- 4cM. Fumanal, A. Ortega-Guerrero, K. M. Jablonka, B. Smit, I. Tavernelli, Adv. Funct. Mater. 2020, 30, 2003792;
- 4dS. Yang, B. Pattengale, S. Lee, J. Huang, ACS Energy Lett. 2018, 3, 532–539;
- 4eP. Dong, K. Gao, L. Zhang, H. Huan, M.-H. Xie, X.-L. Yang, J. Zhang, Appl. Catal. B 2024, 357, 124297;
- 4fK.-K. Chen, S. Guo, M.-J. Ding, T.-B. Lu, Z.-M. Zhang, CCS Chem. 2023, 5, 2650–2662.
- 5
- 5aJ. H. Kim, S. Wu, L. Zdrazil, N. Denisov, P. Schmuki, Angew. Chem. Int. Ed. 2024, 63, e202319255;
- 5bJ. Li, B. Sheng, Y. Chen, J. Yang, T. Ma, C. You, Y. Li, T. Yu, J. Song, H. Pan, X. Wang, B. Zhou, ACS Catal. 2023, 13, 10153–10160;
- 5cP. -Wang, S. Guo, Q. .-P. Zhao, S.-Y. Xu, H.-J. Lv, T.-B. Lu, Z.-M. Zhang, Angew. Chem. Int. Ed. 2024, e202312450;
- 5dS. Guo, F.-G. Zeng, X.-D. Li, K.-K. Chen, P. Wang, T.-B. Lu, Z.-M. Zhang, Natl. Sci. Rev. 2024, 11, nwae130.
- 6
- 6aQ.-D. Liu, Q.-H. Zhang, W.-X. Shi, H.-S. Hu, J. Zhuang, X. Wang, Nat. Chem. 2022, 14, 433–440;
- 6bY. Shimoyama, N. Ogiwara, Z. Weng, S. Uchida, J. Am. Chem. Soc. 2022, 144, 2980–2986;
- 6cM. Anjass, G. A. Lowe, C. Streb, Angew. Chem. Int. Ed. 2020, 60, 7522–7532;
- 6dY. Zhang, X. Wang, Y. Wang, N. Xu, X.-L. Wang, Polyoxometalates 2022, 1, 9140004;
10.26599/POM.2022.9140004 Google Scholar
- 6eS.-Y. Xu, W. Shi, J.-R. Huang, S. Yao, C. Wang, T.-B. Lu, Z.-M. Zhang, Angew. Chem. Int. Ed. 2024, e202406223;
- 6fD. H. Li, X. Y. Zhang, J. Q. Lv, P. W. Cai, Y. Q. Sun, C. Sun, S. T. Zheng, Angew. Chem. Int. Ed. 2023, 62, e202312706.
- 7
- 7aY. Xia, L. Zhang, J. Lu, X. Zhao, L. Dong, J. Liu, Y. Lan, Nat. Synth. 2024, 3, 406–418;
- 7bF.-Y. Yu, Z. .-L. Lang, L.-Y. Yin, K. Feng, Y. .-J. Xia, H.-Q. Tan, H.-T. Zhu, J. Zhong, Z.-H. Kang, Y.-G. Li, Nat. Commun. 2020, 11, 490;
- 7cK. Suzuki, N. Mizuno, K. Yamaguchi, ACS Catal. 2018, 8, 10809–10825;
- 7dH. Lv, W. Guo, K. Wu, Z. Chen, J. Bacsa, D. G. Musaev, Y. V. Geletii, S. M. Lauinger, T. Lian, C. L. Hill, J. Am. Chem. Soc. 2014, 136, 14015–14018;
- 7eW. Chen, H. Li, Y. Jin, W. Lei, Q. Bai, P. Ma, J. Wang, J. Niu, Inorg. Chem. 2023, 62, 18079–18086;
- 7fQ. Y. Hu, S. S. Chen, T. Wågberg, H. S. Zhou, S. J. Li, Y. D. Li, Y. L. Tan, W. Q. Hu, Y. Ding, X. B. Han, Angew. Chem. Int. Ed. 2023, 62, e202303290;
- 7gZ. Jiang, X. Xu, Y. Ma, H. S. Cho, D. Ding, C. Wang, J. Wu, P. Oleynikov, M. Jia, J. Cheng, Y. Zhou, O. Terasaki, T. Peng, L. Zan, H. Deng, Nature 2020, 586, 549–554.
- 8
- 8aY. Liu, S. Liu, D. He, N. Li, Y. Ji, Z. Zheng, F. Luo, S. Liu, Z. Shi, C. Hu, J. Am. Chem. Soc. 2015, 137, 12697–12703;
- 8bY. Li, J. Su, Y. Zhao, L. Feng, L. Gao, X. Xu, Y. Yin, Y. Liu, P. Xiao, L. Yuan, J.-S. Qin, Y. Wang, S. Yuan, H. Zheng, J.-L. Zuo, J. Am. Chem. Soc. 2023, 145, 10227–10235;
- 8cX.-H. Li, H. Li, S.-L. Jiang, L. Yang, H.-Y. Li, Q.-L. Liu, W. Bai, Q. Zhang, C. Xiao, Y. Xie, ACS Catal. 2023, 13, 7189–7198;
- 8dY. Benseghir, A. Lemarchand, M. Duguet, P. Mialane, M. Gomez-Mingot, C. Roch-Marchal, T. Pino, M.-H. Ha-Thi, M. Haouas, M. Fontecave, A. Dolbecq, C. Sassoye, C. Mellot-Draznieks, J. Am. Chem. Soc. 2020, 142, 9428–9438;
- 8eY. Liu, C. Tang, M. Cheng, M. Chen, S. Chen, L. Lei, Y. Chen, H. Yi, Y. Fu, L. Li, ACS Catal. 2021, 11, 13374–13396;
- 8fZ. Zhang, Y. Liu, H. Tian, X. Ma, Q. Yue, Z. Sun, Y. Lu, S. Liu, ACS Nano. 2021, 15, 16581–16588;
- 8gC. Zou, Z.-J. Zhang, X. Xu, Q.-H. Gong, J. Li, C.-D. Wu, J. Am. Chem. Soc. 2012, 134, 87–90.
- 9
- 9aZ.-M. Zhang, T. Zhang, C. Wang, Z. Lin, L.-S. Long, W. Lin, J. Am. Chem. Soc. 2015, 137, 3197–3200;
- 9bX. J. Kong, Z. Lin, Z. M. Zhang, T. Zhang, W. Lin, Table-6416;
- 9cJ. Tian, Z.-Y. Xu, D.-W. Zhang, H. Wang, S.-H. Xie, D.-W. Xu, Y.-H. Ren, H. Wang, Y. Liu, Z.-T. Li, Nat. Commun. 2016, 7, 11580;
- 9dR. Wang, Y. Feng, L. Jiao, Y. Dong, H. Zhou, T. Liu, X. Jing, H. Lv, J. Mater. Chem. A 2023, 11, 5811–5818;
- 9eL. Jiao, Y. Dong, X. Xin, L. Qin, H. Lv, Appl. Catal. B 2021, 291, 120091.
- 10G. Lan, K. Ni, S. S. Veroneau, T. Luo, E. You, W. Lin, J. Am. Chem. Soc. 2019, 141, 6859–6863.
- 11
- 11aZ.-M. Zhang, X. Duan, S. Yao, Z. Wang, Z. Lin, Y.-G. Li, L.-S. Long, E.-B. Wang, W. Lin, Chem. Sci. 2016, 7, 4220–4229;
- 11bK. Mei, Master's thesis, Northeast Normal University (P. R. China) 2018.
- 12J. M. Clemente-Juan, E. Coronado, J. R. Galán-Mascarós, C. J. Gómez-Garcıá, Inorg. Chem. 1998, 38, 55–63.
- 13
- 13aX. Li, L. Yang, Q. Liu, W. Bai, H. Li, M. Wang, Q. Qian, Q. Yang, C. Xiao, Y. Xie, Adv. Mater. 2023, 35, 2304532;
- 13bS. Fu, S. Yao, S. Guo, G.-C. Guo, W. Yuan, T.-B. Lu, Z.-M. Zhang, J. Am. Chem. Soc. 2021, 143, 20792.
- 14Z.-R. Zhang, H.-Y. Sui, W.-X. Shi, J. Ren, S. Yao, T.-B. Lu, Z.-M. Zhang, Angew. Chem. Int. Ed. 2024, e202416711.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.