A Stable Open-Shelled Au26 Nanocluster with Remarkable Performance in Selective Oxidation of Benzyl Alcohol
Yuan-Yuan Dong
Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorDr. Chun-Yu Liu
Jiangsu Engineering Research Centre for Digital Textile Inkjet Printing Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, 214122 P. R. China
Search for more papers by this authorWan-Qi Shi
Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Zong-Jie Guan
Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 PR China
Search for more papers by this authorCorresponding Author
Prof. Dr. Quan-Ming Wang
Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorYuan-Yuan Dong
Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorDr. Chun-Yu Liu
Jiangsu Engineering Research Centre for Digital Textile Inkjet Printing Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, 214122 P. R. China
Search for more papers by this authorWan-Qi Shi
Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Zong-Jie Guan
Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 PR China
Search for more papers by this authorCorresponding Author
Prof. Dr. Quan-Ming Wang
Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorAbstract
Open metal sites are crucial in catalysis. We have used a “loose coordination strategy” (LCS) to preorganize open metal sites in gold cluster catalysts. A gold nanocluster with composition of [Au26(3,4-Me2-Ph-form)9(iPr2-imy)3(Me2S)](BF4)2 (iPr2-imy=1,3-Diisopropylimidazolium tetrafluoroborate, 3,4-Me2-Ph-form=N,N′-Di(3,4-dimethyl-phenyl)formamidine) (Au26) has been obtained by one pot synthesis, i.e. the direct reduction of Me2SAuCl in the presence of N-heterocyclic carbenes and amidinate ligands. ESI-TOF-MS reveals that the Me2S ligand is detached from the cluster to form open sites. The accessibility of the exposed Au atoms has been confirmed quantitatively by luminescent titration with 2-naphthalenethiol. Surprisingly, Au26 has 15 valence electrons, and the presence of an unpaired electron is confirmed by superconducting quantum interference device (SQUID) and electron paramagnetic resonance (EPR). This open-shelled Au26 not only shows unexpected high stability but also exhibits excellent catalytic performance toward the selective oxidation of benzyl alcohol to benzaldehyde, achieving a remarkable turnover number up to 100670.
Conflict of Interests
The authors declare no conflict of Interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420314-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Hutchings, J. Catal. 1985, 96, 292–295.
- 2M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 1987, 16, 405–408.
- 3Y. Du, H. Sheng, D. Astruc, M. Zhu, Chem. Rev. 2020, 120, 526–622.
- 4R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346–10413.
- 5I. Chakraborty, T. Pradeep, Chem. Rev. 2017, 117, 8208–8271.
- 6J. Yan, B. K. Teo, N. Zheng, Acc. Chem. Res. 2018, 51, 3084–3093.
- 7Z. Wu, D. E. Jiang, A. K. Mann, D. R. Mullins, Z. A. Qiao, L. F. Allard, C. Zeng, R. Jin, S. H. Overbury, J. Am. Chem. Soc. 2014, 136, 6111–6122.
- 8Z. J. Guan, J. J. Li, F. Hu, Q. M. Wang, Angew. Chem. Int. Ed. 2022, 61, e202209725.
- 9Y. Wang, X. K. Wan, L. Ren, H. Su, G. Li, S. Malola, S. Lin, Z. Tang, H. Hakkinen, B. K. Teo, Q. M. Wang, N. Zheng, J. Am. Chem. Soc. 2016, 138, 3278–3281.
- 10S. Xie, H. Tsunoyama, W. Kurashige, Y. Negishi, T. Tsukuda, ACS Catal. 2012, 2, 1519–1523.
- 11T. Yoskamtorn, S. Yamazoe, R. Takahata, J.-i. Nishigaki, A. Thivasasith, J. Limtrakul, T. Tsukuda, ACS Catal. 2014, 4, 3696–3700.
- 12R. H. Adnan, V. B. Golovko, Catal. Lett. 2018, 149, 449–455.
- 13A. Shivhare, D. M. Chevrier, R. W. Purves, R. W. J. Scott, J. Phys. Chem. C 2013, 117, 20007–20016.
- 14Y. Tan, X. Y. Liu, L. Zhang, A. Wang, L. Li, X. Pan, S. Miao, M. Haruta, H. Wei, H. Wang, F. Wang, X. Wang, T. Zhang, Angew. Chem. Int. Ed. 2017, 56, 2709–2713.
- 15Y. Liu, H. Tsunoyama, T. Akita, T. Tsukuda, Chem. Commun. 2010, 46, 550–552.
- 16S. F. Yuan, Z. Lei, Z. J. Guan, Q. M. Wang, Angew. Chem. Int. Ed. 2021, 60, 5225–5229.
- 17G. Li, W. Hu, Y. Sun, J. Xu, X. Cai, X. Cheng, Y. Zhang, A. Tang, X. Liu, M. Chen, W. Ding, Y. Zhu, Angew. Chem. Int. Ed. 2020, 59, 21135–21142.
- 18M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Grönbeck, H. Häkkinen, Proc. Natl. Acad. Sci. USA 2008, 105, 9157–9162.
- 19K. M. Harkness, Y. Tang, A. Dass, J. Pan, N. Kothalawala, V. J. Reddy, D. E. Cliffel, B. Demeler, F. Stellacci, O. M. Bakr, J. A. McLean, Nanoscale 2012, 4, 4269–4274.
- 20M. R. Narouz, S. Takano, P. A. Lummis, T. I. Levchenko, A. Nazemi, S. Kaappa, S. Malola, G. Yousefalizadeh, L. A. Calhoun, K. G. Stamplecoskie, H. Häkkinen, T. Tsukuda, C. M. Crudden, J. Am. Chem. Soc. 2019, 141, 14997–15002.
- 21Y. Pei, P. Wang, Z. Ma, L. Xiong, Acc. Chem. Res. 2018, 52, 23–33.
- 22W. W. Xu, X. C. Zeng, Y. Gao, Acc. Chem. Res. 2018, 51, 2739–2747.
- 23J.-J. Li, Z. Liu, Z.-J. Guan, X.-S. Han, W.-Q. Shi, Q.-M. Wang, J. Am. Chem. Soc. 2022, 144, 690–694.
- 24Y. Li, H. K. Kim, R. D. McGillicuddy, S.-L. Zheng, K. J. Anderton, G. J. Stec, J. Lee, D. Cui, J. A. Mason, J. Am. Chem. Soc. 2023, 145, 9304–9312.
- 25H. Shen, G. Deng, S. Kaappa, T. Tan, Y. Z. Han, S. Malola, S. C. Lin, B. K. Teo, H. Hakkinen, N. Zheng, Angew. Chem. Int. Ed. 2019, 58, 17731–17735.
- 26K. Hirano, S. Takano, T. Tsukuda, J. Phys. Chem. C 2021, 125, 9930–9936.
- 27M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485–496.
- 28C. Y. Liu, S. F. Yuan, S. Wang, Z. J. Guan, D. E. Jiang, Q. M. Wang, Nat. Commun. 2022, 13, 2082.
- 29F. Hu, H. W. Luyang, R. L. He, Z. J. Guan, S. F. Yuan, Q. M. Wang, J. Am. Chem. Soc. 2022, 144, 19365–19371.
- 30S. F. Yuan, W. D. Liu, C. Y. Liu, Z. J. Guan, Q. M. Wang, Chem 2022, 28, e202104445.
- 31S. F. Yuan, C. Q. Xu, W. D. Liu, J. X. Zhang, J. Li, Q. M. Wang, J. Am. Chem. Soc. 2021, 143, 12261–12267.
- 32S. F. Yuan, R. L. He, X. S. Han, J. Q. Wang, Z. J. Guan, Q. M. Wang, Angew. Chem. Int. Ed. 2021, 60, 14345–14349.
- 33H. Shen, Z. Xu, M. S. A. Hazer, Q. Wu, J. Peng, R. Qin, S. Malola, B. K. Teo, H. Hakkinen, N. Zheng, Angew. Chem. Int. Ed. 2021, 60, 3752–3758.
- 34V. K. Kulkarni, B. N. Khiarak, S. Takano, S. Malola, E. L. Albright, T. I. Levchenko, M. D. Aloisio, C. T. Dinh, T. Tsukuda, H. Hakkinen, C. M. Crudden, J. Am. Chem. Soc. 2022, 144, 9000–9006.
- 35H. Shen, Q. Wu, S. Malola, Y. Z. Han, Z. Xu, R. Qin, X. Tang, Y. B. Chen, B. K. Teo, H. Hakkinen, N. Zheng, J. Am. Chem. Soc. 2022, 144, 10844–10853.
- 36F. Hu, Z. J. Guan, G. Yang, J. Q. Wang, J. J. Li, S. F. Yuan, G. J. Liang, Q. M. Wang, J. Am. Chem. Soc. 2021, 143, 17059–17067.
- 37J. J. Li, Z. J. Guan, Z. Lei, F. Hu, Q. M. Wang, Angew. Chem. Int. Ed. 2019, 58, 1083–1087.
- 38Z. J. Guan, F. Hu, J. J. Li, Z. R. Liu, Q. M. Wang, Nanoscale 2020, 12, 13346–13350.
- 39Z. J. Guan, J. L. Zeng, S. F. Yuan, F. Hu, Y. M. Lin, Q. M. Wang, Angew. Chem. Int. Ed. 2018, 57, 5703–5707.
- 40J.-Q. Wang, S. Shi, R.-L. He, S.-F. Yuan, G.-Y. Yang, G.-J. Liang, Q.-M. Wang, J. Am. Chem. Soc. 2020, 142, 18086–18092.
- 41S. F. Yuan, Z. J. Guan, W. D. Liu, Q. M. Wang, Nat. Commun. 2019, 10, 4032.
- 42Y. Okinaka, J. Electrochem. Soc. 1973, 120, 739.
- 43J. A. Gardiner, J. W. Collat, J. Am. Chem. Soc. 1964, 86, 3165–3166.
- 44X. Kang, M. Zhu, Coord. Chem. Rev. 2019, 394, 1–38.
- 45Z.-R. Wen, Z.-J. Guan, Y. Zhang, Y.-M. Lin, Q.-M. Wang, Chem. Commun. 2019, 55, 12992–12995.
- 46J. M. Ha, A. Solovyov, A. Katz, Langmuir 2009, 25, 10548–10553.
- 47N. de Silva, J. M. Ha, A. Solovyov, M. M. Nigra, I. Ogino, S. W. Yeh, K. A. Durkin, A. Katz, Nat. Chem. 2010, 2, 1062–1068.
- 48T. Omoda, S. Takano, T. Tsukuda, Chem. Lett. 2019, 48, 885–887.
- 49Ü. Kökçam-Demir, A. Goldman, L. Esrafili, M. Gharib, A. Morsali, O. Weingart, C. Janiak, Chem. Soc. Rev. 2020, 49, 2751–2798.
- 50Z.-J. Guan, F. Hu, S.-F. Yuan, Z.-A. Nan, Y.-M. Lin, Q.-M. Wang, Chem. Sci. 2019, 10, 3360–3365.
- 51Z. J. Guan, R. L. He, S. F. Yuan, J. J. Li, F. Hu, C. Y. Liu, Q. M. Wang, Angew. Chem. Int. Ed. 2022, 61.
- 52M. Zhu, C. M. Aikens, M. P. Hendrich, R. Gupta, H. Qian, G. C. Schatz, R. Jin, J. Am. Chem. Soc. 2009, 131, 2490–2492.
- 53J. Yan, S. Malola, C. Hu, J. Peng, B. Dittrich, B. K. Teo, H. Häkkinen, L. Zheng, N. Zheng, Nat. Commun. 2018, 9, 3357.
- 54M. R. Narouz, K. M. Osten, P. J. Unsworth, R. W. Y. Man, K. Salorinne, S. Takano, R. Tomihara, S. Kaappa, S. Malola, C.-T. Dinh, J. D. Padmos, K. Ayoo, P. J. Garrett, M. Nambo, J. H. Horton, E. H. Sargent, H. Häkkinen, T. Tsukuda, C. M. Crudden, Nat. Chem. 2019, 11, 419–425.
- 55H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, J. Am. Chem. Soc. 2005, 127, 9374–9375.
- 56H. Tsunoyama, N. Ichikuni, H. Sakurai, T. Tsukuda, J. Am. Chem. Soc. 2009, 131, 7086–7093.
- 57A. Abad, P. Concepción, A. Corma, H. García, Angew. Chem. Int. Ed. 2005, 44, 4066–4069.
- 58K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 2004, 126, 10657–10666.
- 59D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight, G. J. Hutchings, Science 2006, 311, 362–365.
- 60C. Shang, Z. P. Liu, J. Am. Chem. Soc. 2011, 133, 9938–9947.
- 61Crystal Data for Au26: C189H232Au26BF4N24S, triclinic, P1̅, a=19.6564(3) Å, b=19.7963(3) Å, c=29.3603(6) Å, α=77.0854(16)°, β=78.7006(15)°, γ=72.6853(14)°, V=12527.9(3) Å3, Z=2, T=173 K, 74230 reflections measured, 38994 unique (Rint=0.0458), final R1=0.0444, wR2=0.1087 for 31907 observed reflections [I >2σ(I)]. CCDC-2392401 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.