Boosting C2+ Alcohols Selectivity and Activity in High-Current CO Electroreduction using Synergistic Cu/Zn Co-Catalysts
Zhitan Wu
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
These authors contributed equally.
Search for more papers by this authorCorresponding Author
Nannan Meng
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
These authors contributed equally.
Search for more papers by this authorRong Yang
Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
These authors contributed equally.
Search for more papers by this authorMaoxin Chen
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJinhui Pan
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorSijia Chi
Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorChao Wu
Institute of Chemical and Engineering Sciences, Agency of Science Technology and Research, 1, Pesek Road, Jurong Island, Singapore, 627833 Singapore
Search for more papers by this authorShibo Xi
Institute of Chemical and Engineering Sciences, Agency of Science Technology and Research, 1, Pesek Road, Jurong Island, Singapore, 627833 Singapore
Search for more papers by this authorYuan Liu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorYingqing Ou
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorWenya Wu
Institute of Materials Research and Engineering, Agency of Science Technology and Research, 2, Fusionopolis Way, #08-03, Innovis, 138634 Singapore
Search for more papers by this authorShuhe Han
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 100872 Hong Kong
Search for more papers by this authorCorresponding Author
Bin Zhang
Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Quan-Hong Yang
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207 China
Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Kian Ping Loh
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorZhitan Wu
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
These authors contributed equally.
Search for more papers by this authorCorresponding Author
Nannan Meng
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
These authors contributed equally.
Search for more papers by this authorRong Yang
Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
These authors contributed equally.
Search for more papers by this authorMaoxin Chen
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJinhui Pan
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorSijia Chi
Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorChao Wu
Institute of Chemical and Engineering Sciences, Agency of Science Technology and Research, 1, Pesek Road, Jurong Island, Singapore, 627833 Singapore
Search for more papers by this authorShibo Xi
Institute of Chemical and Engineering Sciences, Agency of Science Technology and Research, 1, Pesek Road, Jurong Island, Singapore, 627833 Singapore
Search for more papers by this authorYuan Liu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorYingqing Ou
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorWenya Wu
Institute of Materials Research and Engineering, Agency of Science Technology and Research, 2, Fusionopolis Way, #08-03, Innovis, 138634 Singapore
Search for more papers by this authorShuhe Han
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 100872 Hong Kong
Search for more papers by this authorCorresponding Author
Bin Zhang
Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Quan-Hong Yang
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207 China
Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Kian Ping Loh
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207 China
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorAbstract
The electrosynthesis of multi-carbon (C2+) alcohols, specifically ethanol and n-propanol through CO electroreduction (CORR) in H2O, presents a sustainable pathway for intermittent renewable energy storage and a low-carbon economy. However, achieving high selectivity for alcohol production at industrial current densities is kinetically hampered by side reactions such as ethylene generation and hydrogen evolution reaction, which result from competing adsorption of *CO and *H. In this study, we developed a Cu/Zn alloy catalyst to simultaneously enhance the activity and selectivity for alcohol production by increasing CO capture capacity and enriching active hydrogen on Cu sites. Our findings demonstrate that the Cu/5Zn alloy with a molar ratio of Cu to Zn of 95 : 5 exhibits a Faradaic efficiency of 50 % for the selective electrosynthesis of C2+ alcohols during ampere-level CO electrolysis. Mechanistic investigations revealed that the Cu/Zn alloy promotes polarized Cu sites, enhancing CO adsorption while facilitating the spillover of hydrogen atoms from Zn to Cu sites, contributing to selective alcohol formation.
Conflict of Interests
The authors declare no competing interests.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420283-sup-0001-misc_information.pdf4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aGRAND VIEW RESEARCH-MARKET RESEARCH REPORTS 2024, https://www.grandviewresearch.com/industry-analysis/ethanol-market;
- 1bGRAND VIEW RESEARCH-MARKET RESEARCH REPORTS 2024, https://www.grandviewresearch.com/industry-analysis/propanol-market.
- 2
- 2aY. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 2019, 4, 732–745;
- 2bD. Voiry, H. S. Shin, K. P. Loh, M. Chhowalla, Nat. Chem. Rev. 2018, 2, 0105;
- 2cG. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chem. Soc. Rev. 2021, 50, 4993–5061;
- 2dM. B. Ross, P. De Luna, Y. F. Li, C. T. Dinh, D. Kim, P. Yang, E. H. Sargent, Nat. Catal. 2019, 2, 648–658;
- 2eH. Rabiee, L. Ge, X. Q. Zhang, S. H. Hu, M. R. Li, Z. G. Yuan, Energy Environ. Sci. 2021, 14, 1959–2008;
- 2fY. Zhang, K. Xie, F. Zhou, F. Wang, Q. Xu, J. Hu, H. Ding, P. Li, Y. Tan, D. Li, J. Zhu, H. Zhou, C. Zhao, S. Lin, Y. Wu, Adv. Energy Mater. 2022, 12, 2201027.
- 3
- 3aM. Jouny, G. S. Hutchings, F. Jiao, Nat. Catal. 2019, 2, 1062–1070;
- 3bS. Overa, B. S. Crandall, B. Shrimant, D. Tian, B. H. Ko, H. Shin, C. Bae, F. Jiao, Nat. Catal. 2022, 5, 738–745;
- 3cE. Jeng, F. Jiao, React. Chem. Eng. 2020, 5, 1768–1775;
- 3dJ. Y. Kim, P. Zhu, F. Y. Chen, Z. Y. Wu, D. A. Cullen, H. T. Wang, Nat. Catal. 2022, 5, 288–299.
- 4
- 4aJ. E. Huang, F. Li, A. Ozden, A. Sedighian Rasouli, F. P. Garcia de Arquer, S. Liu, S. Zhang, M. Luo, X. Wang, Y. Lum, Y. Xu, K. Bertens, R. K. Miao, C. T. Dinh, D. Sinton, E. H. Sargent, Science 2021, 372, 1074–1078;
- 4bY. Zhao, L. Hao, A. Ozden, S. Liu, R. K. Miao, P. Ou, T. Alkayyali, S. Zhang, J. Ning, Y. Liang, Y. Xu, M. Fan, Y. Chen, J. E. Huang, K. Xie, J. Zhang, C. P. O'Brien, F. Li, E. H. Sargent, D. Sinton, Nat. Synth. 2023, 2, 403–412;
- 4cM. Fan, J. E. Huang, R. K. Miao, Y. Mao, P. Ou, F. Li, X.-Y. Li, Y. Cao, Z. Zhang, J. Zhang, Y. Yan, A. Ozden, W. Ni, Y. Wang, Y. Zhao, Z. Chen, B. Khatir, C. P. O'Brien, Y. Xu, Y. C. Xiao, G. I. N. Waterhouse, K. Golovin, Z. Wang, E. H. Sargent, D. Sinton, Nat. Catal. 2023, 6, 763–772.
- 5M. Ahmadi Khoshooei, X. Wang, G. Vitale, F. Formalik, K. O. Kirlikovali, R. Q. Snurr, P. Pereira-Almao, O. K. Farha, Science 2024, 384, 540–546.
- 6
- 6aH. Zhang, J. Li, M.-J. Cheng, Q. Lu, ACS Catal. 2018, 9, 49–65;
- 6bL. Wang, S. A. Nitopi, E. Bertheussen, M. Orazov, C. G. Morales-Guio, X. Liu, D. C. Higgins, K. Chan, J. K. Nørskov, C. Hahn, T. F. Jaramillo, ACS Catal. 2018, 8, 7445–7454;
- 6cL. Wang, S. Nitopi, A. B. Wong, J. L. Snider, A. C. Nielander, C. G. Morales-Guio, M. Orazov, D. C. Higgins, C. Hahn, T. F. Jaramillo, Nat. Catal. 2019, 2, 702–708;
- 6dX. Ma, T. Yang, D. He, X. Gao, W. Jiang, D. Li, Y. Sun, X. Lin, J. Xu, H. Wang, X. Tai, Y. Lin, T. Yao, H. Zhou, Y. Wu, Nat. Synth. 2024, 10.1038/s44160-024-00672-9.
- 7A. Bagger, W. Ju, A. S. Varela, P. Strasser, J. Rossmeisl, ChemPhysChem 2017, 18, 3266–3273.
- 8
- 8aC. W. Li, J. Ciston, M. W. Kanan, Nature 2014, 508, 504–507;
- 8bT. T. Zhuang, Y. J. Pang, Z. Q. Liang, Z. Y. Wang, Y. Li, C. S. Tan, J. Li, C. T. Dinh, P. De Luna, P. L. Hsieh, T. Burdyny, H. H. Li, M. X. Liu, Y. H. Wang, F. W. Li, A. Proppe, A. Johnston, D. H. Nam, Z. Y. Wu, Y. R. Zheng, A. H. Ip, H. R. Tan, L. J. Chen, S. H. Yu, S. O. Kelley, D. Sinton, E. H. Sargent, Nat. Catal. 2018, 1, 946–951.
- 9
- 9aG. Ma, O. A. Syzgantseva, Y. Huang, D. Stoian, J. Zhang, S. Yang, W. Luo, M. Jiang, S. Li, C. Chen, M. A. Syzgantseva, S. Yan, N. Chen, L. Peng, J. Li, B. Han, Nat. Commun. 2023, 14, 501;
- 9bJ. Li, A. Xu, F. Li, Z. Wang, C. Zou, C. M. Gabardo, Y. Wang, A. Ozden, Y. Xu, D. H. Nam, Y. Lum, J. Wicks, B. Chen, Z. Wang, J. Chen, Y. Wen, T. Zhuang, M. Luo, X. Du, T. K. Sham, B. Zhang, E. H. Sargent, D. Sinton, Nat. Commun. 2020, 11, 3685.
- 10
- 10aW. C. Ma, S. J. Xie, B. Zhang, X. Y. He, X. Liu, B. B. Mei, F. F. Sun, Z. Jiang, L. Lin, Q. H. Zhang, B. Ren, G. Fu, X. L. Hu, Y. Wang, Chem 2023, 9, 1–17;
- 10bP. Wei, D. Gao, T. Liu, H. Li, J. Sang, C. Wang, R. Cai, G. Wang, X. Bao, Nat. Nanotechnol. 2023, 18, 299–306;
- 10cJ. Sang, T. Liu, P. Wei, H. Li, C. Liu, Y. Wang, Y. Rong, Q. Wang, G. Wang, X. Bao, Energy Environ. Sci. 2024, 10.1039/d4ee01258e;
- 10dN. Meng, Z. Wu, Y. Huang, J. Zhang, M. Chen, H. Ma, H. Li, S. Xi, M. Lin, W. Wu, S. Han, Y. Yu, Q. H. Yang, B. Zhang, K. P. Loh, Nat. Commun. 2024, 15, 3892.
- 11
- 11aJ. Feng, L. Zhang, S. Liu, L. Xu, X. Ma, X. Tan, L. Wu, Q. Qian, T. Wu, J. Zhang, X. Sun, B. Han, Nat. Commun. 2023, 14, 4615;
- 11bC. Chen, X. Yan, S. Liu, Y. Wu, Q. Wan, X. Sun, Q. Zhu, H. Liu, J. Ma, L. Zheng, H. Wu, B. Han, Angew. Chem. Int. Ed. Engl. 2020, 59, 16459–16464.
- 12
- 12aX. Wang, Z. Y. Wang, F. P. G. de Arquer, C. T. Dinh, A. Ozden, Y. G. C. Li, D. H. Nam, J. Li, Y. S. Liu, J. Wicks, Z. T. Chen, M. F. Chi, B. Chen, Y. Wang, J. Tam, J. Y. Howe, A. Proppe, P. Todorovic, F. W. Li, T. T. Zhuang, C. M. Gabardo, A. R. Kirmani, C. McCallum, S. F. Hung, Y. W. Lum, M. C. Luo, Y. M. Min, A. N. Xu, C. P. O′Brien, B. Stephen, B. Sun, A. H. Ip, L. J. Richter, S. O. Kelley, D. Sinton, E. H. Sargent, Nat. Energy 2020, 5, 478–486;
- 12bP. Wang, H. Yang, C. Tang, Y. Wu, Y. Zheng, T. Cheng, K. Davey, X. Huang, S. Z. Qiao, Nat. Commun. 2022, 13, 3754.
- 13
- 13aR. Burch, S. E. Golunski, M. S. Spencer, J. Chem. Soc. Faraday Trans. 1990, 86, 2683–2691;
- 13bR. van den Berg, G. Prieto, G. Korpershoek, L. I. van der Wal, A. J. van Bunningen, S. Laegsgaard-Jorgensen, P. E. de Jongh, K. P. de Jong, Nat. Commun. 2016, 7, 13057;
- 13cV. Deerattrakul, P. Dittanet, M. Sawangphruk, P. Kongkachuichay, J. CO2 Util. 2016, 16, 104–113.
- 14
- 14aA. Gonzalez-Fernandez, A. Berenguer-Murcia, D. Cazorla-Amoros, F. Cardenas-Lizana, ACS Appl. Mater. Interfaces 2020, 12, 28158–28168;
- 14bB. Hu, Y. Z. Yin, G. L. Liu, S. L. Chen, X. L. Hong, S. C. E. Tsang, J. Catal. 2018, 359, 17–26.
- 15T. Jiang, Y. Wang, D. Meng, D. Wang, J. Mater. Sci. Mater. Electron. 2016, 27, 12884–12890.
- 16E. Achilli, F. Annoni, N. Armani, M. Patrini, M. Cornelli, L. Celada, M. Micali, A. Terrasi, P. Ghigna, G. Timò, Materials 2022, 15, 2144.
- 17X. S. Su, Y. M. Sun, L. Jin, L. Zhang, Y. Yang, P. Kerns, B. Liu, S. Z. Li, J. He, Appl. Catal. B 2020, 269.
- 18H. S. Jeon, J. Timoshenko, F. Scholten, I. Sinev, A. Herzog, F. T. Haase, B. Roldan Cuenya, J. Am. Chem. Soc. 2019, 141, 19879–19887.
- 19S. B. Varandili, D. Stoian, J. Vavra, K. Rossi, J. R. Pankhurst, Y. T. Guntern, N. Lopez, R. Buonsanti, Chem. Sci. 2021, 12, 14484–14493.
- 20M. P. L. Kang, M. J. Kolb, F. Calle-Vallejo, B. S. Yeo, Adv. Funct. Mater. 2022, 32, 2111597.
- 21Y. Zhao, X. G. Zhang, N. Bodappa, W. M. Yang, Q. Liang, P. M. Radjenovica, Y. H. Wang, Y. J. Zhang, J. C. Dong, Z. Q. Tian, J. F. Li, Energy Environ. Sci. 2022, 15, 3968–3977.
- 22
- 22aY. Rong, T. Liu, J. Sang, R. Li, P. Wei, H. Li, A. Dong, L. Che, Q. Fu, D. Gao, G. Wang, Angew. Chem. Int. Ed. Engl. 2023, 62, e202309893;
- 22bH. Li, P. Wei, T. Liu, M. Li, C. Wang, R. Li, J. Ye, Z.-Y. Zhou, S.-G. Sun, Q. Fu, D. Gao, G. Wang, X. Bao, Nat. Commun. 2024, 15, 4603;
- 22cW. Ren, W. Ma, X. Hu, Joule 2023, 7, 2349–2360.
- 23
- 23aX. Wang, P. F. Ou, A. Ozden, S. F. Hung, J. Tam, C. M. Gabardo, J. Y. Howe, J. Sisler, K. Bertens, F. P. G. de Arquer, R. K. Miao, C. P. O′Brien, Z. Y. Wang, J. Abed, A. S. Rasouli, M. J. Sun, A. H. Ip, D. Sinton, E. H. Sargent, Nat. Energy 2022, 7, 170–176;
- 23bJ. Sisler, S. Khan, A. H. Ip, M. W. Schreiber, S. A. Jaffer, E. R. Bobicki, C.-T. Dinh, E. H. Sargent, ACS Energy Lett. 2021, 6, 997–1002;
- 23cY. Lum, J. E. Huang, Z. Y. Wang, M. C. Luo, D. H. Nam, W. R. Leow, B. Chen, J. Wicks, Y. G. C. Li, Y. H. Wang, C. T. Dinh, J. Li, T. T. Zhuang, F. W. Li, T. K. Sham, D. Sinton, E. H. Sargent, Nat. Catal. 2020, 3, 14–22.
- 24Y. L. Ji, Z. Chen, R. L. Wei, C. Yang, Y. H. Wang, J. Xu, H. Zhang, A. X. Guan, J. T. Chen, T. K. Sham, J. Luo, Y. Y. Yang, X. Xu, G. F. Zheng, Nat. Catal. 2022, 5, 251–258.
- 25Z. Z. Wu, X. L. Zhang, P. P. Yang, Z. Z. Niu, F. Y. Gao, Y. C. Zhang, L. P. Chi, S. P. Sun, J. W. DuanMu, P. G. Lu, Y. C. Li, M. R. Gao, J. Am. Chem. Soc. 2023, 145, 24338–24348.
- 26C. Zhan, F. Dattila, C. Rettenmaier, A. Bergmann, S. Kuhl, R. Garcia-Muelas, N. Lopez, B. R. Cuenya, ACS Catal. 2021, 11, 7694–7701.
- 27J. Li, C. Li, J. Hou, W. Gao, X. Chang, Q. Lu, B. Xu, J. Am. Chem. Soc. 2022, 144, 20495–20506.
- 28H. Y. H. Chan, C. G. Takoudis, M. J. Weaver, J. Phys. Chem. B 1999, 103, 357–365.
- 29
- 29aZ. W. Chen, J. Li, P. Ou, J. E. Huang, Z. Wen, L. Chen, X. Yao, G. Cai, C. C. Yang, C. V. Singh, Q. Jiang, Nat. Commun. 2024, 15, 359;
- 29bJ. K. Nørskov, S. Felix, A. P. Frank, B. Thomas, Fundamental Concepts in Heterogeneous Catalysis, https://doi.org/10.1002/9781118892114.ch2, John Wiley & Sons, 2014.
10.1002/9781118892114.ch2 Google Scholar
- 30
- 30aW. Sun, P. Wang, Y. Jiang, Z. Jiang, R. Long, Z. Chen, P. Song, T. Sheng, Z. Wu, Y. Xiong, Adv. Mater. 2022, 34, 2207691;
- 30bM. E. Jacox, Chem. Phys. 1982, 69, 407–422.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.