Distinctive Photomechanical Shape Change of p-Phenylenediacrylic Acid Dimethyl Ester Single Crystals Induced by a Spatially Heterogeneous Photoreaction
Corresponding Author
Daichi Kitagawa
Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, 558-8585 Osaka, Japan
Search for more papers by this authorRei Tomoda
Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, 558-8585 Osaka, Japan
Search for more papers by this authorSebastian A. Ramos
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, 92521 Riverside, CA, USA
Search for more papers by this authorCorresponding Author
Gregory J. O. Beran
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, 92521 Riverside, CA, USA
Search for more papers by this authorChristopher J. Bardeen
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, 92521 Riverside, CA, USA
Search for more papers by this authorCorresponding Author
Seiya Kobatake
Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, 558-8585 Osaka, Japan
Search for more papers by this authorCorresponding Author
Daichi Kitagawa
Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, 558-8585 Osaka, Japan
Search for more papers by this authorRei Tomoda
Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, 558-8585 Osaka, Japan
Search for more papers by this authorSebastian A. Ramos
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, 92521 Riverside, CA, USA
Search for more papers by this authorCorresponding Author
Gregory J. O. Beran
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, 92521 Riverside, CA, USA
Search for more papers by this authorChristopher J. Bardeen
Department of Chemistry, University of California, Riverside, 501 Big Springs Road, 92521 Riverside, CA, USA
Search for more papers by this authorCorresponding Author
Seiya Kobatake
Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, 558-8585 Osaka, Japan
Search for more papers by this authorAbstract
Understanding photoreaction dynamics in crystals is important for predicting the dynamic property changes accompanying these photoreactions. In this work, we investigate the photoreaction dynamics of p-phenylenediacrylic acid dimethyl ester (p-PDAMe) in single crystals that show reaction front propagation, in which the photoreaction proceeds heterogeneously from the edge to the center of the crystal. Moreover, we find that p-PDAMe single crystals exhibit a distinctive crystal shape change from a parallelogram to a distorted shape resembling a fluttering flag, then to a rectangle as the photoreaction proceeds. Density functional theory calculations predict the crystal structure after the photoreaction, providing a reasonable explanation of the distinctive crystal shape change that results from the spatially heterogeneous photoreaction. These results prove that the spatially heterogeneous photoreaction dynamics have the ability to induce novel crystal shape changes beyond what would be expected based on the equilibrium reactant and product crystal shapes.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420243-sup-0001-misc_information.pdf1.1 MB | Supporting Information |
ange202420243-sup-0001-Movie_S1.mp46.1 MB | Supporting Information |
ange202420243-sup-0001-Movie_S2.mp41.7 MB | Supporting Information |
ange202420243-sup-0001-Movie_S3.mp42.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geertsema, Chem. Rev. 2000, 100, 1789–1816;
- 1bD. Kitagawa, K. Tanaka, S. Kobatake, J. Mater. Chem. C 2017, 5, 6210–6215;
- 1cX. Dong, T. Guo, D. Kitagawa, S. Kobatake, P. Palffy-Muhoray, C. J. Bardeen, Adv. Funct. Mater. 2020, 30, 1902396;
- 1dL. Li, P. Commins, M. B. Al-Handawi, D. P. Karothu, J. M. Halabi, S. Schramm, J. Weston, R. Rezgui, P. Naumov, Chem. Sci. 2019, 10, 7327–7332;
- 1eL. Zhang, P. e. Naumov, X. Du, Z. Hu, J. Wang, Adv. Mater. 2017;
- 1fM. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114, 12174–12277.
- 2T. J. White, Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work, John Wiley & Sons, 2017.
10.1002/9781119123279 Google Scholar
- 3
- 3aY. Yu, M. Nakano, T. Ikeda, Nature 2003, 425, 145–145;
- 3bS. Iamsaard, S. J. Aßhoff, B. Matt, T. Kudernac, J. J. Cornelissen, S. P. Fletcher, N. Katsonis, Nat. Chem. 2014, 6, 229–235.
- 4
- 4aA. S. Kuenstler, K. D. Clark, J. Read de Alaniz, R. C. Hayward, ACS Macro Lett. 2020, 9, 902–909;
- 4bC. D. Eisenbach, Polymer 1980, 21, 1175–1179.
- 5K. Iwaso, Y. Takashima, A. Harada, Nat. Chem. 2016, 8, 625–632.
- 6
- 6aS. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature 2007, 446, 778–781;
- 6bR. O. Al-Kaysi, A. M. Mueller, C. J. Bardeen, J. Am. Chem. Soc. 2006, 128, 15938–15939.
- 7
- 7aP. Naumov, S. Chizhik, M. K. Panda, N. K. Nath, E. Boldyreva, Chem. Rev. 2015, 115, 12440–12490;
- 7bM. Morimoto, M. Irie, J. Am. Chem. Soc. 2010, 132, 14172–14178;
- 7cJ. M. Halabi, E. Ahmed, S. Sofela, P. Naumov, Proc. Natl. Acad. Sci. USA 2021, 118.
- 8
- 8aF. Tong, D. Kitagawa, X. Dong, S. Kobatake, C. J. Bardeen, Nanoscale 2018, 10, 3393–3398;
- 8bT. Taniguchi, A. Kubota, T. Moritoki, T. Asahi, H. Koshima, RSC Adv. 2018, 8, 34314–34320;
- 8cO. S. Bushuyev, A. Tomberg, T. Friscic, C. J. Barrett, J. Am. Chem. Soc. 2013, 135, 12556–12559;
- 8dO. S. Bushuyev, T. A. Singleton, C. J. Barrett, Adv. Mater. 2013, 25, 1796–1800;
- 8eH. Koshima, N. Ojima, Dyes Pigm. 2012, 92, 798–801;
- 8fM. Tamaoki, D. Kitagawa, S. Kobatake, Cryst. Growth Des. 2021, 21, 3093–3099;
- 8gF. Tong, M. Al-Haidar, L. Zhu, R. O. Al-Kaysi, C. J. Bardeen, Chem. Commun. 2019, 55, 3709–3712;
- 8hJ. M. Cole, J. d. J. Velazquez-Garcia, D. J. Gosztola, S. G. Wang, Y.-S. Chen, Chem. Mater. 2019, 31, 4927–4935;
- 8iR. Medishetty, S. C. Sahoo, C. E. Mulijanto, P. Naumov, J. J. Vittal, Chem. Mater. 2015, 27, 1821–1829;
- 8jP. Naumov, S. C. Sahoo, B. A. Zakharov, E. V. Boldyreva, Angew. Chem. Int. Ed. 2013, 52, 9990–9995;
- 8kF. Tong, D. Kitagawa, I. Bushnak, R. O. Al-Kaysi, C. J. Bardeen, Angew. Chem. Int. Ed. 2021, 60, 2414–2423;
- 8lA. K. Bartholomew, I. B. Stone, M. L. Steigerwald, T. H. Lambert, X. Roy, J. Am. Chem. Soc. 2022, 144, 16773–16777;
- 8mK. Lam, V. Carta, M. Almtiri, I. Bushnak, I. Islam, R. O. Al-Kaysi, C. J. Bardeen, J. Am. Chem. Soc. 2024, 146, 18836–18840;
- 8nB. B. Rath, J. J. Vittal, J. Am. Chem. Soc. 2020, 142, 20117–20123;
- 8oH. Wang, P. Chen, Z. Wu, J. Zhao, J. Sun, R. Lu, Angew. Chem. Int. Ed. 2017, 56, 9463–9467;
- 8pP. Naumov, S. C. Sahoo, B. A. Zakharov, E. V. Boldyreva, Angew. Chem. Int. Ed. 2013, 52, 9990–9995.
- 9
- 9aA. Hirano, D. Kitagawa, S. Kobatake, CrystEngComm 2019, 21, 2495–2501;
- 9bD. Kitagawa, H. Tsujioka, F. Tong, X. Dong, C. J. Bardeen, S. Kobatake, J. Am. Chem. Soc. 2018, 140, 4208–4212;
- 9cA. Hirano, T. Hashimoto, D. Kitagawa, K. Kono, S. Kobatake, Cryst. Growth Des. 2017, 17, 4819–4825;
- 9dD. Kitagawa, R. Tanaka, S. Kobatake, Phys. Chem. Chem. Phys. 2015, 17, 27300–27305.
- 10
- 10aF. Tong, W. Xu, M. Al-Haidar, D. Kitagawa, R. O. Al-Kaysi, C. J. Bardeen, Angew. Chem. Int. Ed. 2018, 57, 7080–7084;
- 10bR. O. Al-Kaysi, F. Tong, M. Al-Haidar, L. Zhu, C. J. Bardeen, Chem. Commun. 2017, 53, 2622–2625.
- 11
- 11aD. Kitagawa, C. Iwaihara, H. Nishi, S. Kobatake, Crystals 2015, 5, 551–561;
- 11bD. Kitagawa, S. Kobatake, Photochem. Photobiol. Sci. 2014, 13, 764–769;
- 11cD. Kitagawa, S. Kobatake, J. Phys. Chem. C 2013, 117, 20887–20892.
- 12K. Morimoto, D. Kitagawa, H. Sotome, S. Ito, H. Miyasaka, S. Kobatake, Angew. Chem. Int. Ed. 2022, 61, e202212290.
- 13S. Kataoka, D. Kitagawa, H. Sotome, S. Ito, H. Miyasaka, C. J. Bardeen, S. Kobatake, Chem. Sci. 2024, 15, 13421–13428.
- 14H. Nakanishi, M. Hasegawa, Y. Sasada, J. Polym. Sci. Polym. Phys. Ed. 1977, 15, 173–191.
- 15K. Ueno, H. Nakanishi, M. Hasegawa, Y. Sasada, Acta Crystallogr. Sect. B 1978, 34, 2034–2035.
- 16
- 16aC. J. Perry, G. J. O. Beran, Cryst. Growth Des. 2023, 23, 8352–8360;
- 16bC. J. Cook, C. J. Perry, G. J. O. Beran, J. Phys. Chem. Lett. 2023, 14, 6823–6831;
- 16cC. J. Cook, W. Li, B. F. Lui, T. J. Gately, R. O. Al-Kaysi, L. J. Mueller, C. J. Bardeen, G. J. O. Beran, Chem. Sci. 2023, 14, 937–949.
- 17
- 17aA. D. Becke, J. Chem. Phys. 1986, 85, 7184–7187;
- 17bJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 18A. Otero-de-la-Roza, E. R. Johnson, J. Chem. Phys. 2012, 136, 174109.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.