Deciphering pH Mismatching at the Electrified Electrode–Electrolyte Interface towards Understanding Intrinsic Water Molecule Oxidation Kinetics
Dr. Miao Wang
Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Ken Sakaushi
Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorDr. Miao Wang
Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Ken Sakaushi
Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorAbstract
Unveiling the key influencing factors towards electrode/electrolyte interface control is a long-standing challenge for a better understanding of microscopic electrode kinetics, which is indispensable to building up guiding principles for designer electrocatalysts with desirable functionality. Herein, we exemplify the oxygen evolution reaction (OER) via water molecule oxidation with the iridium dioxide electrocatalyst and uncovered the significant mismatching effect of pH between local electrode surface and bulk electrolyte: the intrinsic OER activity under acidic or near-neutral condition was deciphered to be identical by adjusting this pH mismatching. This result indicates that the local pH effect at the electrified solid–liquid interface plays the main role in the “fake” OER performance. This local pH effect on the OER electrode process is further verified by integrating a wide spectrum of analytical approaches. This study will accelerate the understanding of the local proton-induced effect on electrode interface processes and the development of advanced electrochemical activity.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202419823-sup-0001-misc_information.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 2M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn, H. Schäfer, Chem. Soc. Rev. 2022, 51, 4583–4762.
- 3R. Daiyan, I. MacGill, R. Amal, ACS Energy Lett. 2020, 5, 3843–3847.
- 4World Energy Investment 2024, International Energy Agency (IEA), Paris, 2024 https://www.iea.org/reports/world-energy-investment-2024.
- 5
- 5aR. Parsons, Chem. Rev. 1990, 90, 813–826;
- 5bT. Kumeda, K. Sakaushi, Curr. Opin. Electrochem. 2022, 36, 101121.
- 6
- 6aH. Helmholtz, Annalen der Physik 1879, 243, 337–382;
10.1002/andp.18792430702 Google Scholar
- 6bM. Gouy, J. Phys. Theor. Appl. 1910, 9, 457–468;
- 6cD. L. Chapman, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1913, 25, 475–481;
10.1080/14786440408634187 Google Scholar
- 6dO. Stern, Zeitschrift für Elektrochemie und angewandte physikalische Chemie 1924, 30, 508–516;
- 6eR. Oscar Knefler, Phys. Rev. 1928, 31, 1051–1059;
10.1103/PhysRev.31.1051 Google Scholar
- 6fA. Frumkin, Zeitschrift für Physikalische Chemie 1933, 164A, 121–133;
10.1515/zpch-1933-16411 Google Scholar
- 6gD. C. Grahame, Chem. Rev. 1947, 41, 441–501;
- 6hW. Schmickler, J. Electroanal. Chem. Interfacial Electrochem. 1983, 150, 19–24.
- 7V. R. Stamenkovic, D. Strmcnik, P. P. Lopes, N. M. Markovic, Nat. Mater. 2017, 16, 57–69.
- 8
- 8aM. F. Toney, J. N. Howard, J. Richer, G. L. Borges, J. G. Gordon, O. R. Melroy, D. G. Wiesler, D. Yee, L. B. Sorensen, Nature 1994, 368, 444–446;
- 8bK.-i. Ataka, T. Yotsuyanagi, M. Osawa, J. Phys. Chem. 1996, 100, 10664–10672;
- 8cY.-H. Wang, S. Zheng, W.-M. Yang, R.-Y. Zhou, Q.-F. He, P. Radjenovic, J.-C. Dong, S. Li, J. Zheng, Z.-L. Yang, G. Attard, F. Pan, Z.-Q. Tian, J.-F. Li, Nature 2021, 600, 81–85.
- 9
- 9aE. L. DeWalt-Kerian, S. Kim, M. S. Azam, H. Zeng, Q. Liu, J. M. Gibbs, J. Phys. Chem. Lett. 2017, 8, 2855–2861;
- 9bW. Chen, M.-K. Zhang, B.-Y. Liu, J. Cai, Y.-X. Chen, Curr. Opin. Electrochem. 2022, 34, 101003;
- 9cX. Zhu, J. Huang, M. Eikerling, Acc. Chem. Res. 2024, 57, 2080–2092.
- 10
- 10aA. A. Kornyshev, R. Qiao, J. Phys. Chem. C 2014, 118, 18285–18290;
- 10bR. Hayes, G. G. Warr, R. Atkin, Chem. Rev. 2015, 115, 6357–6426.
- 11Z. Zhang, Y. Gao, S. Chen, J. Huang, J. Electrochem. Soc. 2020, 167, 013519.
- 12
- 12aM. H. Hansen, A. Nilsson, J. Rossmeisl, Phys. Chem. Chem. Phys. 2017, 19, 23505–23514;
- 12bA. Groß, S. Sakong, Curr. Opin. Electrochem. 2019, 14, 1–6.
- 13
- 13aNicholson Carlisle, Cruickshank, The Philosophical Magazine 1800, 7, 337–347;
10.1080/14786440008562593 Google Scholar
- 13bA. Fujishima, K. Honda, Nature 1972, 238, 37–38;
- 13cT. Shinagawa, A. T. Garcia-Esparza, K. Takanabe, Sci. Rep. 2015, 5, 13801;
- 13dW. Hoisang, K. Sakaushi, Curr. Opin. Electrochem. 2022, 36, 101136.
- 14
- 14aJ. O'M. Bockris, J. Chem. Phys. 1956, 24, 817–827;
- 14bM. W. Kanan, D. G. Nocera, Science 2008, 321, 1072–1075;
- 14cE. Fabbri, T. J. Schmidt, ACS Catal. 2018, 8, 9765–9774.
- 15
- 15aM. R. Singh, E. L. Clark, A. T. Bell, Phys. Chem. Chem. Phys. 2015, 17, 18924–18936;
- 15bM.-K. Zhang, Z. Wei, W. Chen, M.-L. Xu, J. Cai, Y.-X. Chen, Electrochim. Acta 2020, 363, 137160.
- 16
- 16aT. Nishimoto, T. Shinagawa, T. Naito, K. Takanabe, J. Catal. 2020, 391, 435–445;
- 16bT. Nishimoto, T. Shinagawa, T. Naito, K. Takanabe, ChemSusChem 2021, 14, 1554–1564.
- 17T. Lazaridis, B. M. Stühmeier, H. A. Gasteiger, H. A. El-Sayed, Nature Catalysis 2022, 5, 363–373.
- 18
- 18aN. Ibl, Pure Appl. Chem. 1981, 53, 1827–1840;
- 18bY. Yokoyama, T. Fukutsuka, K. Miyazaki, T. Abe, J. Electrochem. Soc. 2018, 165, A3299;
- 18cT. Naito, T. Shinagawa, T. Nishimoto, K. Takanabe, ChemSusChem 2020, 13, 5921–5933;
- 18dJ. C. Fornaciari, L.-C. Weng, S. M. Alia, C. Zhan, T. A. Pham, A. T. Bell, T. Ogitsu, N. Danilovic, A. Z. Weber, Electrochim. Acta 2022, 405, 139810.
- 19
- 19aJ. K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Proc. Natl. Acad. Sci. USA 2011, 108, 937–943;
- 19bO. M. Magnussen, A Groß, J. Am. Chem. Soc. 2018, 141, 4777–4790;
- 19cK. Sakaushi, A. Lyalin, S. Tominaka, T. Taketsugu, K Uosaki, ACS Nano 2017, 11, 1770–1779;
- 19dK. Sakaushi, M. Eckardt, A. Lyalin, T. Taketsugu, R. J. Behm, K. Uosaki, ACS Catalysis 2018, 8, 8162–8176;
- 19eJ. Huang, J. Chem. Phys. 2020, 153, 164707;
- 19fX. Zhu, J. Huang, M. Eikerling, JACS Au 2023, 3, 1052–1064;
- 19gT. Kumeda, L. Laverdure, K. Honkala, M. M. Melander, K. Sakaushi, Angew. Chem. Int. Ed. 2023, 62, e202312841.
- 20C. Liang, R. R. Rao, K. L. Svane, J. H. L. Hadden, B. Moss, S. B. Scott, M. Sachs, J. Murawski, A. M. Frandsen, D. J. Riley, M. P. Ryan, J. Rossmeisl, J. R. Durrant, I. E. L. Stephens, Nature Catalysis 2024, 7, 763–775.
- 21M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Michigan, 1974.
- 22Y. Hao, Y. Kang, S. Wang, Z. Chen, C. Lei, X. Cao, L. Chen, Y. Li, Z. Liu, M. Gong, Angew. Chem. Int. Ed. 2023, 62, e202303200.
- 23
- 23aH. B. Tao, Y. Xu, X. Huang, J. Chen, L. Pei, J. Zhang, J. G. Chen, B. Liu, Joule 2019, 3, 1498–1509;
- 23bM. Wang, Y.-S. Wei, L. Zou, H.-F. Wang, S. Shen, Q. Xu, J. Phys. Chem. C 2021, 125, 16420–16427.
- 24
- 24aA. Hartstein, J. R. Kirtley, J. C. Tsang, Phys. Rev. Lett. 1980, 45, 201–204;
- 24bM. Osawa, K.-i. Ataka, K. Yoshii, T. Yotsuyanagi, J. Electron. Spectrosc. Relat. Phenom. 1993, 64–65, 371–379;
- 24cK. Sakaushi, T. Kumeda, S. Hammes-Schiffer, M. M. Melander, O. Sugino, Phys. Chem. Chem. Phys. 2020, 22, 19401–19442.
- 25
- 25aM. Osawa, M. Tsushima, H. Mogami, G. Samjeské, A. Yamakata, J. Phys. Chem. C 2008, 112, 4248–4256;
- 25bH. Wang, H. D. Abruña, J. Am. Chem. Soc. 2023, 145, 18439–18446;
- 25cN. Sagawa, T. Shikata, J. Phys. Chem. B 2015, 119, 8087–8095.
- 26Z.-Q. Tian, B. Ren, Y.-X. Chen, S.-Z. Zou, B.-W. Mao, J. Chem. Soc. Faraday Trans. 1996, 92, 3829–3838.
- 27A. Michaelides, P. Hu, J. Chem. Phys. 2001, 114, 513–519.
- 28
- 28aW. J. Albery, E. J. Calvo, J. Chem. Soc. Faraday Trans. 1 1983, 79, 2583–2596;
- 28bS. Yao, M. Wang, M. Madou, J. Electrochem. Soc. 2001, 148, H29;
- 28cY. Yokoyama, K. Miyazaki, Y. Miyahara, T. Fukutsuka, T. Abe, ChemElectroChem 2019, 6, 4750–4756;
- 28dY. Yokoyama, K. Miyazaki, Y. Kondo, Y. Miyahara, T. Fukutsuka, T. Abe, Chem. Lett. 2020, 49, 195–198;
- 28eJ. H. Wang, J. Phys. Chem. 1965, 69, 4412–4412;
- 28fT. Shinagawa, M. T.-K. Ng, K. Takanabe, ChemSusChem 2017, 10, 4155–4162;
- 28gJ. O'M. Bockris, A. K. N. Reddy, M. Gamboa-Aldeco, MODERN ELECTROCHEMISTRY, Vol. 2 A, Kluwer Academic, New York, 2000;
- 28hM. C. O. Monteiro, M. T. M. Koper, Curr. Opin. Electrochem. 2021, 25, 100649;
- 28iM. C. O. Monteiro, X. Liu, B. J. L. Hagedoorn, D. D. Snabilié, M. T. M. Koper, ChemElectroChem 2022, 9, e202101223;
- 28jM. H. Hicks, W. Nie, A. E. Boehme, H. A. Atwater, T. Agapie, J. C. Peters, J. Am. Chem. Soc. 2024, 146, 25282–25289;
- 28kJ. Huang, M. Li, M. J. Eslamibidgoli, M. Eikerling, A. Groß, JACS Au 2021, 1, 1752–1765;
- 28lS. S. Veroneau, A. C. Hartnett, J. Ryu, H. Hong, C. Costentin, D. G. Nocera, J. Am. Chem. Soc. 2024, 146, 28925–28931;
- 28mR. L. Doyle, I. J. Godwin, M. P. Brandon, M. E. G. Lyons, Phys. Chem. Chem. Phys. 2013, 15, 13737–13783.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.