MOF-on-MOF Heterostructured Electrocatalysts for Efficient Nitrate Reduction to Ammonia
Yingying Zou
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorYuechen Yan
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorQingsong Xue
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorChaoqi Zhang
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorTong Bao
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorXinchan Zhang
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorLing Yuan
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorSicong Qiao
National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 P. R. China
Search for more papers by this authorLi Song
National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 P. R. China
Search for more papers by this authorProf. Jin Zou
Materials Engineering and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, 4072 Australia
Search for more papers by this authorCorresponding Author
Prof. Chengzhong Yu
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia
State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Chao Liu
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062 P. R. China
Search for more papers by this authorYingying Zou
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorYuechen Yan
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorQingsong Xue
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorChaoqi Zhang
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorTong Bao
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorXinchan Zhang
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorLing Yuan
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Search for more papers by this authorSicong Qiao
National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 P. R. China
Search for more papers by this authorLi Song
National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 P. R. China
Search for more papers by this authorProf. Jin Zou
Materials Engineering and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland, 4072 Australia
Search for more papers by this authorCorresponding Author
Prof. Chengzhong Yu
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia
State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Chao Liu
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 P. R. China
State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062 P. R. China
Search for more papers by this authorAbstract
Electrocatalytic nitrate reduction reaction (NO3−RR) is an important route for sustainable NH3 synthesis and environmental remediation. Metal–organic frameworks (MOFs) are one family of promising NO3−RR electrocatalysts, however, there is plenty of room to improve in their performance, calling for new design principles. Herein, a MOF-on-MOF heterostructured electrocatalyst with interfacial dual active sites and build-in electric field is fabricated for efficient NO3−RR to NH3 production. By growing Co-HHTP (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) nanorods on Ni-BDC (BDC=1,4-benzenedicarboxylate) nanosheets, experimental and theoretical investigations demonstrate the formation of Ni−O−Co bonds at the interface of MOF-on-MOF heterostructure, leading to dual active sites tailed for NO3−RR. The Ni sites facilitate the adsorption and activation of NO3−, while the Co sites boost the H2O decomposition to supply active hydrogen (Hads) for N-containing intermediates hydrogenation on adjacent Ni sites, cooperatively reducing the energy barriers of NO3−RR process. Together with the accelerated electron transfer enabled by built-in electric field, remarkable NO3−RR performance is achieved with an NH3 yield rate of 11.46 mg h−1 cm−2 and a Faradaic efficiency of 98.4 %, outperforming most reported MOF-based electrocatalysts. This work provides new insights into the design of high-performance NO3−RR electrocatalysts.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409799-sup-0001-misc_information.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Xu, Y. Ma, J. Chen, W. Zhang, J. Yang, Chem. Soc. Rev. 2022, 51, 2710–2758;
- 1bY. Shi, Z. Zhao, D. Yang, J. Tan, X. Xin, Y. Liu, Z. Jiang, Chem. Soc. Rev. 2023, 52, 6938–6956.
- 2P. Mehta, P. Barboun, F. A. Herrera, J. Kim, P. Rumbach, D. B. Go, J. C. Hicks, W. F. Schneider, Nat. Catal. 2018, 1, 269–275.
- 3L. Li, C. Tang, H. Jin, K. Davey, S.-Z. Qiao, Chem 2021, 7, 3232–3255.
- 4D. Liu, L. Qiao, S. Peng, H. Bai, C. Liu, W. F. Ip, K. H. Lo, H. Liu, K. W. Ng, S. Wang, X. Yang, H. Pan, Adv. Funct. Mater. 2023, 33, 2303480.
- 5Y. S. Wu, Z. Jiang, Z. C. Lin, Y. Y. Liang, H. L. Wang, Nat. Sustain. 2021, 4, 725-++.
- 6P. H. van Langevelde, I. Katsounaros, M. T. M. Koper, Joule 2021, 5, 290–294.
- 7J. Lim, C. Y. Liu, J. Park, Y. H. Liu, T. P. Senftle, S. W. Lee, M. C. Hatzell, ACS Catal. 2021, 11, 7568–7577.
- 8H. Du, H. Guo, K. Wang, X. Du, B. A. Beshiwork, S. Sun, Y. Luo, Q. Liu, T. Li, X. Sun, Angew. Chem. Int. Ed. 2022, 62, e202215782.
- 9J. Yang, H. F. Qi, A. Q. Li, X. Y. Liu, X. F. Yang, S. X. Zhang, Q. Zhao, Q. K. Jiang, Y. Su, L. L. Zhang, J. F. Li, Z. Q. Tian, W. Liu, A. Q. Wang, T. Zhang, J. Am. Chem. Soc. 2022, 144, 12062–12071.
- 10Y. Lv, S. W. Ke, Y. Gu, B. Tian, L. Tang, P. Ran, Y. Zhao, J. Ma, J. L. Zuo, M. Ding, Angew. Chem. Int. Ed. 2023, 62, e202305246.
- 11X. Xiao, L. L. Zou, H. Pang, Q. Xu, Chem. Soc. Rev. 2020, 49, 301–331.
- 12P. Liu, J. Yan, H. Huang, W. Song, Chem. Eng. J. 2023, 466, 143134.
- 13Y. Chen, J. Li, G. Jiang, B. Xu, J. Zhang, H. Zhang, S. Shu, J. Environ. Chem. Eng. 2023, 11, 110472.
- 14Z. W. Chang, G. Meng, Y. F. Chen, C. Chen, S. H. Han, P. Wu, L. B. Zhu, H. Tian, F. T. Kong, M. Wang, X. Z. Cui, J. L. Shi, Adv. Mater. 2023, 35, 2304508.
- 15
- 15aC. Liu, J. Wang, J. J. Wan, C. Z. Yu, Coord. Chem. Rev. 2021, 432, 213743;
- 15bY. Zou, C. Liu, C. Zhang, L. Yuan, J. Li, T. Bao, G. Wei, J. Zou, C. Yu, Nat. Commun. 2023, 14, 5780;
- 15cC. Liu, Q. Sun, L. Lin, J. Wang, C. Q. Zhang, C. H. Xia, T. Bao, J. J. Wan, R. Huang, J. Zou, C. Z. Yu, Nat. Commun. 2020, 11, 4971.
- 16
- 16aY. Gu, Y.-n. Wu, L. Li, W. Chen, F. Li, S. Kitagawa, Angew. Chem. Int. Ed. 2017, 56, 15658–15662;
- 16bY. Wang, Y. Ban, Z. Hu, Y. Zhao, M. Zheng, W. Yang, T. Zhang, Angew. Chem. Int. Ed. 2021, 61, e202114479.
- 17L. Yuan, C. Zhang, Y. Zou, T. Bao, J. Wang, C. Tang, A. Du, C. Yu, C. Liu, Adv. Funct. Mater. 2023, 33, 2214627.
- 18
- 18aY. Jiang, T. Y. Chen, J. L. Chen, Y. Liu, X. Yuan, J. Yan, Q. Sun, Z. Xu, D. Zhang, X. Wang, C. Meng, X. Guo, L. Ren, L. Liu, R. Y. Y. Lin, Adv. Mater. 2023, 2306910;
- 18bF. Shahbazi Farahani, M. S. Rahmanifar, A. Noori, M. F. El-Kady, N. Hassani, M. Neek-Amal, R. B. Kaner, M. F. Mousavi, J. Am. Chem. Soc. 2022, 144, 3411–3428.
- 19
- 19aK. Rui, G. Zhao, Y. Chen, Y. Lin, Q. Zhou, J. Chen, J. Zhu, W. Sun, W. Huang, S. X. Dou, Adv. Funct. Mater. 2018, 28, 1801554;
- 19bQ. Zha, F. Yuan, G. Qin, Y. Ni, Inorg. Chem. 2020, 59, 1295–1305.
- 20M. Wang, X. Dong, Z. Meng, Z. Hu, Y. G. Lin, C. K. Peng, H. Wang, C. W. Pao, S. Ding, Y. Li, Q. Shao, X. Huang, Angew. Chem. Int. Ed. 2021, 60, 11190–11195.
- 21
- 21aA. Carton, A. Mesbah, T. Mazet, F. Porcher, M. François, Solid State Sci. 2007, 9, 465–471;
- 21bH. Chang, Y. Zhou, S. Zhang, X. Zheng, Q. Xu, Adv. Mater. Interfaces 2021, 8, 2100205.
- 22M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. F. Duan, B. Dunn, Y. Yamamto, O. Terasaki, O. M. Yaghi, Chem. Mater. 2012, 24, 3511–3513.
- 23B. Zhou, Y. Y. Li, Y. Q. Zou, W. Chen, W. Zhou, M. L. Song, Y. J. Wu, Y. X. Lu, J. L. Liu, Y. Y. Wang, S. Y. Wang, Angew. Chem. Int. Ed. 2021, 60, 22908–22914.
- 24Q. X. Zhou, R. X. Sun, Y. P. Ren, R. Tian, J. Yang, H. Pang, K. Huang, X. L. Tian, L. Xu, Y. W. Tang, Carbon Energy 2023, 5, e273.
- 25
- 25aZ. Yuan, J. Li, M. Yang, Z. Fang, J. Jian, D. Yu, X. Chen, L. Dai, J. Am. Chem. Soc. 2019, 141, 4972–4979;
- 25bK. Ding, J. Hu, W. Jin, L. Zhao, Y. Liu, Z. Wu, B. Weng, H. Hou, X. Ji, Adv. Funct. Mater. 2022, 32, 2201944;
- 25cX. Zhu, X. Yao, X. Lang, J. Liu, C.-V. Singh, E. Song, Y. Zhu, Q. Jiang, Adv. Sci. 2023, 10, 2303682.
- 26R. R. Zhang, Z. T. Sun, C. C. Zong, Z. Y. Lin, H. Huang, K. Yang, J. Chen, S. Liu, M. X. Huang, Y. Yang, W. H. Zhang, Q. W. Chen, Nano Energy 2019, 57, 753–760.
- 27W. J. Zang, T. Sun, T. Yang, S. B. Xi, M. Waqar, Z. K. Kou, Z. Y. Lyu, Y. P. Feng, J. Wang, S. J. Pennycook, Adv. Mater. 2021, 33, 2003846.
- 28
- 28aY. Dang, G. Wang, G. Su, Z. Lu, Y. Wang, T. Liu, X. Pu, X. Wang, C. Wu, C. Song, Q. Zhao, H. Rao, M. Sun, ACS Nano 2022, 16, 4536–4550;
- 28bG. Q. Zhao, P. Li, N. Y. Cheng, S. X. Dou, W. P. Sun, Adv. Mater. 2020, 32, 2000872.
- 29X. H. Wang, X. H. Wang, J. F. Huang, S. X. Li, A. Meng, Z. J. Li, Nat. Commun. 2021, 12, 4112.
- 30L. B. Wang, B. Cheng, L. Y. Zhang, J. G. Yu, Small 2021, 17, 2103447.
- 31H. Z. Liu, J. Park, Y. F. Chen, Y. Qiu, Y. Cheng, K. Srivastava, S. Gu, B. H. Shanks, L. T. Roling, W. Z. Li, ACS Catal. 2021, 11, 8431–8442.
- 32
- 32aP. P. Li, Z. Y. Jin, Z. W. Fang, G. H. Yu, Energy Environ. Sci. 2021, 14, 3522–3531;
- 32bY. F. Chen, H. Z. Liu, N. Ha, S. Licht, S. Gu, W. Z. Li, Nat. Catal. 2020, 3, 1055–1061.
- 33J. Li, G. M. Zhan, J. H. Yang, F. J. Quan, C. L. Mao, Y. Liu, B. Wang, F. C. Lei, L. J. Li, A. W. M. Chan, L. P. Xu, Y. B. Shi, Y. Du, W. C. Hao, P. K. Wong, J. F. Wang, S. X. Dou, L. Z. Zhang, J. C. Yu, J. Am. Chem. Soc. 2020, 142, 7036–7046.
- 34
- 34aY. T. Xu, M. Y. Xie, H. Q. Zhong, Y. Cao, ACS Catal. 2022, 12, 8698–8706;
- 34bZ. Gao, Y. L. Lai, Y. Tao, L. H. Xiao, L. X. Zhang, F. Luo, ACS Central Sci. 2021, 7, 1066–1072;
- 34cL. X. Li, W. J. Sun, H. Y. Zhang, J. L. Wei, S. X. Wang, J. H. He, N. J. Li, Q. F. Xu, D. Y. Chen, H. Li, J. M. Lu, J. Mater. Chem. A 2021, 9, 21771–21778;
- 34dX. Zhu, H. Huang, H. Zhang, Y. Zhang, P. Shi, K. Qu, S.-B. Cheng, A.-L. Wang, Q. Lu, ACS Appl. Mater. Interfaces 2022, 14, 32176–32182;
- 34eJ. Yan, J. Li, P. Liu, H. Huang, W. Song, Green Chem. 2023, 25, 8645–8651.
- 35
- 35aY.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W.-Y. Gao, N. Zhang, X. Su, X. Feng, J.-W. Zhou, B. Wang, C.-W. Hu, A.-X. Yin, R. Si, Y.-W. Zhang, C.-H. Yan, Nat. Catal. 2019, 2, 448–456;
- 35bY. L. Zhao, Y. Liu, Z. J. Zhang, Z. K. Mo, C. Y. Wang, S. Y. Gao, Nano Energy 2022, 97, 107124;
- 35cY. Yu, C. H. Wang, Y. F. Yu, Y. T. Wang, B. Zhang, Sci China Chem 2020, 63, 1469–1476;
- 35dN. Zhou, Z. Wang, N. Zhang, D. Bao, H. Zhong, X. Zhang, ACS Catal. 2023, 13, 7529–7537;
- 35eY. Xu, Y. Sheng, M. Wang, T. Ren, K. Shi, Z. Wang, X. Li, L. Wang, H. Wang, J. Mater. Chem. A 2022, 10, 16883–16890;
- 35fG.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu, H. Wang, Nat. Energy 2020, 5, 605–613;
- 35gP. Gao, Z. H. Xue, S. N. Zhang, D. Xu, G. Y. Zhai, Q. Y. Li, J. S. Chen, X. H. Li, Angew. Chem. Int. Ed. 2021, 60, 20711–20716;
- 35hZ. Li, L. Wang, Y. Cai, J.-R. Zhang, W. Zhu, J. Hazard. Mater. 2022, 440, 129828;
- 35iZ. Y. Wu, M. Karamad, X. Yong, Q. Z. Huang, D. A. Cullen, P. Zhu, C. A. Xia, Q. F. Xiao, M. Shakouri, F. Y. Chen, J. Y. Kim, Y. Xia, K. Heck, Y. F. Hu, M. S. Wong, Q. L. Li, I. Gates, S. Siahrostami, H. T. Wang, Nat. Commun. 2021, 12, 2870;
- 35jZ. Deng, J. Liang, Q. Liu, C. Ma, L. Xie, L. Yue, Y. Ren, T. Li, Y. Luo, N. Li, B. Tang, A. Ali Alshehri, I. Shakir, P. O. Agboola, S. Yan, B. Zheng, J. Du, Q. Kong, X. Sun, Chem. Eng. J. 2022, 435, 135104;
- 35kX. E. Zhao, Z. R. Li, S. Gao, X. P. Sun, S. Y. Zhu, Chem. Commun. 2022, 58, 12995–12998;
- 35lY. T. Wang, W. Zhou, R. R. Jia, Y. F. Yu, B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 5350–5354;
- 35mY. G. Bu, C. Wang, W. K. Zhang, X. H. Yang, J. Ding, G. D. Gao, Angew. Chem. Int. Ed. 2023, 62, e202217337;
- 35nL. Huang, L. Cheng, T. Ma, J. J. Zhang, H. Wu, J. Su, Y. Song, H. Zhu, Q. Liu, M. Zhu, Z. Zeng, Q. He, M. K. Tse, D. t. Yang, B. I. Yakobson, B. Z. Tang, Y. Ren, R. Ye, Adv. Mater. 2023, 35, 2211856;
- 35oS. H. Ye, Z. D. Chen, G. K. Zhang, W. D. Chen, C. Peng, X. Y. Yang, L. R. Zheng, Y. L. Li, X. Z. Ren, H. Q. Cao, D. F. Xue, J. S. Qiu, Q. L. Zhang, J. H. Liu, Energy Environ. Sci. 2022, 15, 760–770.
- 36W. Liu, H. Liu, L. Dang, H. Zhang, X. Wu, B. Yang, Z. Li, X. Zhang, L. Lei, S. Jin, Adv. Funct. Mater. 2017, 27, 1603904.
- 37M. Saliba, M. Stolterfoht, C. M. Wolff, D. Neher, A. Abate, Joule 2018, 2, 1019–1024.
- 38S. S. Liu, M. F. Wang, H. Q. Ji, L. F. Zhang, J. J. Ni, N. J. Li, T. Qian, C. L. Yan, J. M. Lu, Adv. Mater. 2023, 35, 2211730.
- 39D. P. Butcher, A. A. Gewirth, Nano Energy 2016, 29, 457–465.
- 40Y. Wang, S. Xia, R. Cai, J. Zhang, J. Wang, C. Yu, J. Cui, Y. Zhang, J. Wu, S. Yang, H. H. Tan, Y. Wu, Small 2023, 19, 2302295.
- 41H. Liu, J. Timoshenko, L. Bai, Q. Li, M. Rüscher, C. Sun, B. Roldan Cuenya, J. Luo, ACS Catal. 2023, 13, 1513–1521.
- 42
- 42aS. Han, H. Li, T. Li, F. Chen, R. Yang, Y. Yu, B. Zhang, Nat. Catal. 2023, 6, 402–414;
- 42bH. Niu, Z. Zhang, X. Wang, X. Wan, C. Shao, Y. Guo, Adv. Funct. Mater. 2021, 31, 2008533.
- 43H. M. Liu, X. Y. Lang, C. Zhu, J. Timoshenko, M. Rüscher, L. C. Bai, N. Guijarro, H. B. Yin, Y. Peng, J. H. Li, Z. Liu, W. C. Wang, B. Roldan Cuenya, J. S. Luo, Angew. Chem. Int. Ed. 2022, 61, e202202556.
- 44
- 44aA. Hu, W. Lv, T. Lei, W. Chen, Y. Hu, C. Shu, X. Wang, L. Xue, J. Huang, X. Du, H. Wang, K. Tang, C. Gong, J. Zhu, W. He, J. Long, J. Xiong, ACS Nano 2020, 14, 3490–3499;
- 44bX. Wang, H. Hu, X. Yan, Z. Zhang, M. Yang, Angew. Chem. Int. Ed. 2024, 63, e202401364;
- 44cR. Meng, J. Huang, Y. Feng, L. Zu, C. Peng, L. Zheng, L. Zheng, Z. Chen, G. Liu, B. Chen, Y. Mi, J. Yang, Adv. Energy Mater. 2018, 8, 1801514.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.