Extending the π-Conjugation of a Donor-Acceptor Covalent Organic Framework for High-Rate and High-Capacity Lithium-Ion Batteries
Chengqiu Li
State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorAo Yu
State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorWenKai Zhao
School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Beijing, 100081 China
Search for more papers by this authorProf. Guankui Long
School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Beijing, 100081 China
Search for more papers by this authorProf. Qichun Zhang
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shilin Mei
State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chang-Jiang Yao
State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorChengqiu Li
State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorAo Yu
State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorWenKai Zhao
School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Beijing, 100081 China
Search for more papers by this authorProf. Guankui Long
School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Beijing, 100081 China
Search for more papers by this authorProf. Qichun Zhang
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shilin Mei
State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Chang-Jiang Yao
State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorAbstract
Realizing high-rate and high-capacity features of Lihium-organic batteries is essential for their practical use but remains a big challenge, which is due to the instrinsic poor conductivity, limited redox kinetics and low utility of organic electrode mateials. This work presents a well-designed donor-acceptor Covalent Organic Framework (COFs) with extended conjugation, mesoscale porosity, and dual redox-active centers to promote fast charge transfer and multi-electron processes. As anticipated, the prepared cathode with benzo [1,2-b:3,4-b′:5,6-b′′] trithiophene (BTT) as p-type and pyrene-4,5,9,10-tetraone (PTO) as n-type material (BTT-PTO-COF) delivers impressive specific capacity (218 mAh g−1 at 0.2 A g−1 in ether-based electrolyte and 275 mAh g−1 at 0.2 A g−1 in carbonate-based electrolyte) and outstanding rate capability (79 mAh g−1 at 50 A g−1 in ether-based electrolyte and 124 mAh g−1 at 10 A g−1 in carbonate-based electrolyte). In addition, the potential of BTT-PTO-COF electrode for prototype batteries has been demonstrated by full cells of dual-ion (FDIBs), which attain comparable electrochemical performances to the half cells. Moreover, mechanism studies combining ex situ characterization and theoratical calculations reveal the efficient dual-ion storage process and facile charge transfer of BTT-PTO-COF. This work not only expands the diversity of redox-active COFs but also provide concept of structure design for high-rate and high-capacity organic electrodes.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409421-sup-0001-misc_information.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Yoshino, Angew. Chem. Int. Ed. 2012, 51, 5798–5800.
- 2A. Bilich, K. Langham, R. Geyer, L. Goyal, J. Hansen, A. Krishnan, J. Bergesen, P. SinhEnviron, Sci. Technol. 2017, 51, 1043–10521.
- 3Y. Shi, X. Zhou, J. Zhang, A. M. Bruck, A. C. Bond, A. C. Marschilok, K. J. Takeuchi, E. S. Takeuchi, G. Yu, Nano Lett. 2017, 17, 1906–1914.
- 4X.-R. Han, X.-T. Guo, M.-J. Xu, H. Pang, Y.-W. Ma, Rare Met. 2020, 39, 1099–1106.
- 5S. Wang, F. Li, A. D. Easley, J. L. Lutkenhaus, Nat. Mater. 2018, 18, 69–75.
- 6Y. Lu, J. Chen, Nat. Chem. Rev. 2020, 4, 127–142.
- 7P. Poizot, J. Gaubicher, S. Renault, L. Dubois, Y. Liang, Y. Yao, Chem. Rev. 2020, 120, 6490–6557.
- 8Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu, A. Facchetti, Y. Yao, Nat. Mater. 2017, 16, 841–848.
- 9Y.-Q. Cai, Z.-T. Gong, Q. Rong, J.-M. Liu, L.-F. Yao, F.-X. Cheng, J.-J. Liu, S.-B. Xia, H. Guo, Appl. Surf. Sci. 2020, 594.
- 10Z. Tie, Z. Niu, Angew. Chem. Int. Ed. 2020, 59, 21293–21303.
- 11D. Xiong, P. Ruan, Z. Li, W. Yi, J. Wang, Angew. Chem. Int. Ed. 10.1002/anie.202406047.
- 12D. J. Kim, D.-J. Yoo, M. T. Otley, A. Prokofjevs, C. Pezzato, M. Owczarek, S. J. Lee, J. W. Choi, J. F. Stoddart, Nat. Energy 2018, 4, 51–59.
- 13Y. Chen, K. Fan, Y. Gao, C. Wang, Adv. Mater. 2022, 34.
- 14T. Nokami, T. Matsuo, Y. Inatomi, N. Hojo, T. Tsukagoshi, H. Yoshizawa, A. Shimizu, H. Kuramoto, K. Komae, H. Tsuyama, J.-i. Yoshida, J. Am. Chem. Soc. 2012, 134, 19694–19700.
- 15L. Zhong, Z. Fang, C. Shu, C. Mo, X. Chen, D. Yu, Angew. Chem. Int. Ed. 2021, 60, 10164–10171.
- 16K. Li, Y. Wang, B. Gao, X. Lv, Z. Si, H. Wang, J. Colloid Interface Sci. 2021, 601, 446–453.
- 17M. Lu, S.-B. Zhang, M.-Y. Yang, Y.-F. Liu, J.-P. Liao, P. Huang, Mi Zhang, S.-L. Li, Z.-M. Su, Y.-Q. Lan, Angew. Chem. Int. Ed. 2023, 62, e202307632.
- 18X. Li, Y. Wang, F. Zhang, X. Lang, Appl. Catal. B 2024, 340, 123190.
- 19Z. Li, T. Deng, S. Ma, Z. Zhang, G. Wu, J. Wang, Q. Li, H. Xia, S. Yang, X. Liu, J. Am. Chem. Soc. 2023, 145 (15), 8364–8374.
- 20S. Daliran, A. R. Oveisi, Y. Peng, A. L. pez-Magano, M. Khajeh, R. Mas-Balleste, J. Alema, R. Luque, H. Garcia, Chem. Soc. Rev. 2022, 51, 8140.
- 21K. C. Ranjeesh, A. Rezk, J. I. Martinez, S. Gaber, A. Merhi, T. Skorjanc, M. Finšgar, G. E. Luckachan, A. Trabolsi, B. R. Kaafarani, A. Nayfeh, D. Shetty, Adv. Sci. 2023, 10, 2303562.
- 22K. Zhang, W. Liu, Y. Gao, X. Wang, Z. Chen, R. Ning, W. Yu, R. Li, L. Li, X. Li, K. Yuan, L. Ma, N. Li, C. Shen, W. Huang, K. Xie, K. P. Loh, Adv. Mater. 2021, 33, e2006323.
- 23W. Liu, K. Wang, X. Zhan, Z. Liu, X. Yang, Y. Jin, B. Yu, L. Gong, H. Wang, D. Qi, D. Yuan, J. Jiang, J. Am. Chem. Soc. 2023, 145, 8141–8149.
- 24Y. Yusran, Q. Fang, V. Valtchev, Adv. Mater. 2020, 32, 2002038.
- 25D.-G. Wang, T. Qiu, W. Guo, Z. Liang, H. Tabassum, D. Xia, R. Zou, Energy Environ. Sci. 2021, 14, 688.
- 26H. Gao, Q. Zhu, A. R. Neale, M. Bahri, X. Wang, H. Yang, L. Liu, R. Clowes, N. D. Browning, R. S. Sprick, M. A. Little, L. J. Hardwick, A. I. Cooper, Adv. Energy Mater. 2021, 11, 2101880.
- 27A. Molina, N. Patil, E. Ventosa, M. Liras, J. Palma, R. Marcilla, ACS Energy Lett. 2020, 5, 2945–2953.
- 28W. Yuan, J. Weng, M. Ding, H.-M. Jiang, Z. Fan, Z. Zhao, P. Zhang, L.-P. Xu, P. Zhou, Energy Storage Mater. 2024, 65. 103142.
- 29X. Liu, Y. Jin, H. Wang, X. Yang, P. Zhang, K. Wang, J. Jiang, Adv. Mater. 2022, 34, 2203605.
- 30S. Wang, Q. Wang, P. Shao, Y. Han, X. Gao, L. Ma, S. Yuan, X. Ma, J. Zhou, X. Feng, B. Wang, J. Am. Chem. Soc. 2017, 139, 4258–4261.
- 31X. Guan, H. Li, Y. Ma, M. Xue, Q. Fang, Y. Yan, V. Valtchev, S. Qiu, Nat. Chem. 2019, 11, 587–594.
- 32X. Xu, S. Zhang, K. Xu, H. Chen, X. Fan, N. Huang, J. Am. Chem. Soc. 2023, 145, 1022–1030.
- 33S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094–409.
- 34H. Wei, J. Ning, X. Cao, X. Li, L. Hao, J. Am. Chem. Soc. 2018, 140, 11618–11622.
- 35Y. Liu, H. Zhang, H. Yu, Z. Liao, S. Paasch, S. Xu, R. Zhao, E. Brunner, M. Bonn, H. I. Wang, T. Heine, M. Wang, Y. Mai, X. Feng, Angew. Chem. Int. Ed. 2023, 62, e202305978.
- 36R. Yan, B. Mishra, M. Traxler, J. Roeser, N. Chaoui, B. Kumbhakar, J. Schmidt, S. Li, A. Thomas, P. Pachfule, Angew. Chem. Int. Ed. 2023, 62, e202302276.
- 37C. Gu, N. Huang, Y. Chen, L. Qin, H. Xu, S. Zhang, F. Li, Y. Ma, D. Jiang, Angew. Chem. Int. Ed. 2015, 54, 13594–13598.
- 38X. Wu, X. Feng, J. Yuan, X. Yang, H. Shu, C. Yang, Z. liu, J. Peng, E. Liu, S. Tan, P. Gao, Energy Storage Mater. 2022, 46, 252–258.
- 39F. Huang, X. Dong, Y. Wang, X. Lang, Appl. Catal. B 2023, 330, 122585.
- 40Z. Li, T. Deng, S. Ma, Z. Zhang, G. Wu, J. Wang, Q. Li, H. Xia, S. W. Yang, X. Liu, J. Am. Chem. Soc. 2023, 145, 8364–8374.
- 41J. Yang, J. Yang, Y. Xu, Y. Li, CCS Chem. 2024, 6, 749–760.
- 42C. J. Yao, Z. Wu, J. Xie, F. Yu, W. Guo, Z. J. Xu, D. S. Li, S. Zhang, Q. Zhang, ChemSusChem 2020, 13, 2457–2463.
- 43H. Gao, A. R. Neale, Q. Zhu, M. Bahri, X. Wang, H. Yang, Y. Xu, R. Clowes, N. D. Browning, M. A. Little, L. J. Hardwick, A. I. Cooper, J. Am. Chem. Soc. 2022, 144, 9434–9442.
- 44T. Nokami, T. Matsuo, Y. Inatomi, N. Hojo, T. Tsukagoshi, H. Yoshizawa, A. Shimizu, H. Kuramoto, K. Komae, H. Tsuyama, J.-i. Yoshida, J. Am. Chem. Soc. 2012, 134, 19694–19700.
- 45E. Vitaku, C. N. Gannett, K. L. Carpenter, L. Shen, H. D. Abruña, W. R. Dichtel, J. Am. Chem. Soc. 2020, 142, 16.
- 46V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518.
- 47G. Wang, M. Yu, J. Wang, D. Li, D. Tan, M. Loffler, X. Zhuang, K. Mullen, X. Feng, Adv. Mater. 2018, 30, e1800533.
- 48Z. Lei, X. Chen, W. Sun, Y. Zhang, Y. Wang, Adv. Energy Mater. 2018, 9, 1801010.
- 49H. Zhang, W. Sun, X. Chen, Y. Wang, ACS Nano 2019, 13, 14252–14261.
- 50S. Xu, G. Wang, B. P. Biswal, M. Addicoat, S. Paasch, W. Sheng, X. Zhuang, E. Brunner, T. Heine, R. Berger, X. Feng, Angew. Chem. Int. Ed. 2019, 58, 849–853.
- 51H. Gao, A. R. Neale, Q. Zhu, M. Bahri, X. Wang, H. Yang, Y. Xu, R. Clowes, N. D. Browning, M. A. Little, L. J. Hardwick, A. I. Cooper, J. Am. Chem. Soc. 2022, 144, 9434–9442.
- 52G. Wang, N. Chandrasekhar, B. P. Biswal, D. Becker, S. Paasch, E. Brunner, M. Addicoat, M. Yu, R. Berger, X. Feng, Adv. Mater. 2019, 1901478.
- 53H. Gao, Q. Zhu, A. R. Neale, M. Bahri, X. Wang, H. Yang, L. Liu, R. Clowes, N. D. Browning, R. S. Sprick, M. A. Little, L. J. Hardwick, A. I. Cooper, Adv. Energy Mater. 2021, 11, 2101880.
- 54S. S. Zhang, InfoMat. 2019, 2, 942–949.
- 55S. Gu, J. Chen, R. Hao, X. Chen, Z. Wang, I. Hussain, G. Liu, K. Liu, Q. Gan, Z. Li, H. Guo, Y. Li, H. Huang, K. Liao, K. Zhang, Z. Lu, Chem. Eng. J. 2023, 454, 139877.
- 56Y. Wang, X. Wang, J. Tang, W. Tang, J. Mater. Chem. A. 2022, 10, 13868–13875.
- 57W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257–2261.
- 58M. Yang, C. Mo, L. Fang, J. Li, Z. Yuan, Z. Chen, Q. Jiang, X. Chen, D. Yu, Adv. Funct. Mater. 2020, 30, 2000516.
- 59Z. Luo, L. Liu, Q. Zhao, F. Li, J. Chen, Angew. Chem. Int. Ed. 2017, 56, 12561–12565.
- 60J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
- 61T. Lu, Q. Chen, J. Comput. Chem. 2022, 43, 539–555.
- 62S. Jin, X. Ding, X. Feng, M. Supur, K. Furukawa, S. Takahashi, M. Addicoat, M. E. El-Khouly, T. Nakamura, S. Irle, S. Fukuzumi, A. Nagai, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 2017–2021.
- 63Z. Meng, R. M. Stolz, K. A. Mirica, J. Am. Chem. Soc. 2019, 141, 11929–11937.
- 64C. Yang, K. Jiang, Q. Zheng, X. Li, H. Mao, W. Zhong, C. Chen, B. Sun, H. Zheng, X. Zhuang, J. A. Reimer, Y. Liu, J. Zhang, J. Am. Chem. Soc. 2021, 143, 17701–17707.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.