Lithiation Induced Hetero-Superlattice Zn/ZnLi as Stable Anode for Aqueous Zinc-Ion Batteries
Chao Hu
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorZefang Yang
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorQi Zhang
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorMingze Zhang
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorTingqing Wu
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorChunlin Xie
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorHao Wang
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorProf. Yougen Tang
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Haiyan Wang
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorChao Hu
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorZefang Yang
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorQi Zhang
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorMingze Zhang
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorTingqing Wu
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorChunlin Xie
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorHao Wang
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorProf. Yougen Tang
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Haiyan Wang
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorAbstract
Three dimensional (3D) framework structure is one of the most effective ways to achieve uniform zinc deposition and thus inhibit the Zn dendrites growth in working Zn metallic anode. A major challenge facing for the most commonly used 3D zincophilic hosts is that the zincophilic layer tends to peel off during repeatedly cycling, making it less stable. Herein, for the first time, a hetero-superlattice Zn/ZnLi (HS−Zn/ZnLi) anode containing periodic arrangements of metallic Zn phase and zincophilic ZnLi phase at the nanoscale, is well designed and fabricated via electrochemical lithiation method. Based on binding energy and stripping energy calculation, and the operando optical observation of plating/stripping behaviors, the zincophilic ZnLi sites with a strong Zn adsorption ability in the interior of the 3D ZnLi framework structure can effectively guide uniform Zn nucleation and dendrite-free zinc deposition, which significantly improves the cycling stability of the HS−Zn/ZnLi alloy (over 2800 h without a short-circuit at 2 mA cm−2). More importantly, this strategy can be extended to HS−Zn/ZnNa and HS−Zn/ZnK anodes that are similar to the HS−Zn/ZnLi microstructure, also displaying significantly enhanced cycling performances in AZIBs. This study can provide a novel strategy to develop the dendrite-free metal anodes with stable cycling performance.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409096-sup-0001-misc_information.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aE. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Science 2019, 366, eaan8285;
- 1bY. Shao, M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R. B. Kaner, Chem. Rev. 2018, 118, 9233–9280;
- 1cZ. Wang, M. Zhou, L. Qin, M. Chen, Z. Chen, S. Guo, L. Wang, G. Fang, S. Liang, eScience 2022, 2, 209–218.
- 2
- 2aG. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 2018, 3, 2480–2501;
- 2bA. Konarov, N. Voronina, J. H. Jo, Z. Bakenov, Y.-K. Sun, S.-T. Myung, ACS Energy Lett. 2018, 3, 2620–2640.
- 3
- 3aQ. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun, Y. Tang, X. Ji, H. Wang, Nat. Commun. 2020, 11, 3961;
- 3bX. Zhang, J. Li, D. Liu, M. Liu, T. Zhou, K. Qi, L. Shi, Y. Zhu, Y. Qian, Energy Environ. Sci. 2021, 14, 3120–3129.
- 4
- 4aX. Wang, C. Sun, Z.-S. Wu, SusMat 2023, 3, 180–206;
- 4bZ. Cai, J. Wang, Y. Sun, eScience 2023, 3, 100093.
- 5
- 5aF. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater. 2018, 17, 543–549;
- 5bJ. Zheng, Q. Zhao, T. Tang, J. Yin, C. D. Quilty, G. D. Renderos, X. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, L. A. Archer, Science 2019, 366, 645–648.
- 6
- 6aQ. Zhang, Z. Yang, H. Ji, X. Zeng, Y. Tang, D. Sun, H. Wang, SusMat 2021, 1, 432–447;
- 6bZ. Zhang, B. Xi, X. Ma, W. Chen, J. Feng, S. Xiong, SusMat 2022, 2, 114–141.
- 7J. Huang, Q. Peng, K. Liu, G.-z. Fang, J. Cent. South Univ. 2023, 30, 434–442.
- 8R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding, A. Song, H. Yi, L. Yang, Y. Song, Y. Cui, J. Liu, Z. Wang, S. Li, Q. Zhao, F. Pan, Nano Energy 2021, 80, 105478.
- 9A. Naveed, H. Yang, Y. Shao, J. Yang, N. Yanna, J. Liu, S. Shi, L. Zhang, A. Ye, B. He, J. Wang, Adv. Mater. 2019, 31, 1900668.
- 10Y. Li, P. Wu, W. Zhong, C. Xie, Y. Xie, Q. Zhang, D. Sun, Y. Tang, H. Wang, Energy Environ. Sci. 2021, 14, 5563–5571.
- 11H. Qin, W. Kuang, N. Hu, X. Zhong, D. Huang, F. Shen, Z. Wei, Y. Huang, J. Xu, H. He, Adv. Funct. Mater. 2022, 32, 2206695.
- 12
- 12aN. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao, Z. Niu, Angew. Chem. Int. Ed. 2021, 60, 2861–2865;
- 12bW. Guo, Y. Zhang, X. Tong, X. Wang, L. Zhang, X. Xia, J. Tu, Mater. Today 2021, 20, 100675.
- 13
- 13aS.-B. Wang, Q. Ran, R.-Q. Yao, H. Shi, Z. Wen, M. Zhao, X.-Y. Lang, Q. Jiang, Nat. Commun. 2020, 11, 1634;
- 13bQ. Zhao, W. Liu, Y. Chen, L. Chen, Chem. Eng. J. 2022, 450, 137979.
- 14
- 14aY. Yin, S. Wang, Q. Zhang, Y. Song, N. Chang, Y. Pan, H. Zhang, X. Li, Adv. Mater. 2020, 32, 1906803;
- 14bJ. B. Park, C. Choi, J. H. Park, S. Yu, D.-W. Kim, Adv. Energy Mater. 2022, 12, 2202937.
- 15
- 15aA. Bani Hashemi, G. Kasiri, F. La Mantia, Electrochim. Acta 2017, 258, 703–708;
- 15bY. Zhang, L. Zhao, Y. Liang, X. Wang, Y. Yao, eScience 2022, 2, 110–115.
- 16
- 16aL. T. Hieu, S. So, I. T. Kim, J. Hur, Chem. Eng. J. 2021, 411, 128584;
- 16bY. Hao, J. Zhou, G. Wei, A. liu, Y. Zhang, Y. Mei, B. Lu, M. Luo, M. Xie, ACS Appl. Energ. Mater. 2021, 4, 6364–6373.
- 17
- 17aW. Dong, J.-L. Shi, T.-S. Wang, Y.-X. Yin, C.-R. Wang, Y.-G. Guo, RSC Adv. 2018, 8, 19157–19163;
- 17bJ. Li, Q. Lin, Z. Zheng, L. Cao, W. Lv, Y. Chen, ACS Appl. Mater. Interfaces 2022, 14, 12323–12330.
- 18N. Guo, W. Huo, X. Dong, Z. Sun, Y. Lu, X. Wu, L. Dai, L. Wang, H. Lin, H. Liu, H. Liang, Z. He, Q. Zhang, Small Methods 2022, 6, 2200597.
- 19
- 19aX.-Y. Fan, H. Yang, B. Feng, Y. Zhu, Y. Wu, R. Sun, L. Gou, J. Xie, D.-L. Li, Y.-L. Ding, Chem. Eng. J. 2022, 445, 136799;
- 19bH. Meng, Q. Ran, T.-Y. Dai, H. Shi, S.-P. Zeng, Y.-F. Zhu, Z. Wen, W. Zhang, X.-Y. Lang, W.-T. Zheng, Q. Jiang, Nano-Micro Lett. 2022, 14, 128.
- 20
- 20aA. Barthelemy, M. N. Baibich, J. M. Broto, R. Cabanel, G. Creuzet, P. Etienne, A. Fert, A. Friederich, S. Lequien, F. N. Van Dau, K. Ounadjela, MRS Online Proceedings Library 1989, 151, 43–48;
- 20bJ. Zhou, W. Zhang, Y.-C. Lin, J. Cao, Y. Zhou, W. Jiang, H. Du, B. Tang, J. Shi, B. Jiang, X. Cao, B. Lin, Q. Fu, C. Zhu, W. Guo, Y. Huang, Y. Yao, S. S. P. Parkin, J. Zhou, Y. Gao, Y. Wang, Y. Hou, Y. Yao, K. Suenaga, X. Wu, Z. Liu, Nature 2022, 609, 46–51;
- 20cJ. Song, M. Sun, ACS Appl. Mater. Interfaces 2024, 16, 3325–3333.
- 21
- 21aQ. Lin, L. Wang, J. Semicond. 2023, 44, 041601–041601;
- 21bY. Li, Z. Yuan, D. Li, J. Li, Y. Zhang, M. Wang, G. Li, L. Wang, W. Han, ACS Nano 2024, 18, 4733–4745;
- 21cZ. Yuan, Q. Lin, Y. Li, W. Han, L. Wang, Adv. Mater. 2023, 35, 2211527.
- 22J. Zhang, Q. Lei, Z. Ren, X. Zhu, J. Li, Z. Li, S. Liu, Y. Ding, Z. Jiang, J. Li, Y. Huang, X. Li, X. Zhou, Y. Wang, D. Zhu, M. Zeng, L. Fu, ACS Nano 2021, 15, 17748–17756.
- 23T. Li, B. Wang, J. Ning, W. Li, G. Guo, D. Han, B. Xue, J. Zou, G. Wu, Y. Yang, A. Dong, D. Zhao, Matter 2019, 1, 976–987.
- 24Z. Yang, C. Hu, Q. Zhang, T. Wu, C. Xie, H. Wang, Y. Tang, X. Ji, H. Wang, Angew. Chem. Int. Ed. 2023, 62, e202308017.
- 25Z. Dai-shun, L. Hai-rong, W. Yan-yong, Z. Fu-jia, Chin. J. Lumin. 2001, 22, 351–356.
- 26C. Yan, C. Lv, B.-E. Jia, L. Zhong, X. Cao, X. Guo, H. Liu, W. Xu, D. Liu, L. Yang, J. Liu, H. H. Hng, W. Chen, L. Song, S. Li, Z. Liu, Q. Yan, G. Yu, Journal of the American Chemical Society 2022, 144, 11444–11455.
- 27H. Liu, J. Xia, N. Zhang, H. Cheng, W. Bi, X. Zu, W. Chu, H. Wu, C. Wu, Y. Xie, Nature Catalysis 2021, 4, 202–211.
- 28Y. Ko, C. Hwang, H.-K. Song, J. Power Sources 2016, 315, 145–151.
- 29R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong, Y. Dai, Z. Du, Z. Zhang, J. Li, F. Guo, X. Gao, H. Dong, J. Zhu, X. Wang, G. He, Nano-Micro Lett. 2023, 15, 81.
- 30E. DelVecchio, T. Liu, Y.-T. Chang, Y. Nie, M. Eslami, M. A. Charpagne, npj Materials Degradation 2024, 8, 45.
- 31
- 31aS.-S. Chi, Q. Wang, B. Han, C. Luo, Y. Jiang, J. Wang, C. Wang, Y. Yu, Y. Deng, Nano Lett. 2020, 20, 2724–2732;
- 31bS. Liu, Y. Ma, Z. Zhou, S. Lou, H. Huo, P. Zuo, J. Wang, C. Du, G. Yin, Y. Gao, Energy Storage Mater. 2020, 33, 423–431.
- 32Z. Yang, C. Lv, W. Li, T. Wu, Q. Zhang, Y. Tang, M. Shao, H. Wang, Small 2022, 18, 2104148.
- 33Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, Angew. Chem. Int. Ed. 2019, 58, 15841–15847.
- 34H. Liu, C.-Y. Chen, H. Yang, Y. Wang, L. Zou, Y.-S. Wei, J. Jiang, J. Guo, W. Shi, Q. Xu, P. Cheng, Adv. Mater. 2020, 32, 2004553.
- 35
- 35aW. Jiang, K. Zhu, W. Xie, Z. Wang, Z. Ou, W. Yang, Chem. Sci. 2024, 15, 2601–2611;
- 35bC. Zhu, P. Li, G. Xu, H. Cheng, G. Gao, Coord. Chem. Rev. 2023, 485, 215142.
- 36M. M. Ndipingwi, C. O. Ikpo, N. W. Hlongwa, N. Dywili, A. L. Djoumessi Yonkeu, E. I. Iwuoha, J. Appl. Electrochem. 2019, 49, 465–474.
- 37
- 37aJ. Wang, B. Zhang, Z. Cai, R. Zhan, W. Wang, L. Fu, M. Wan, R. Xiao, Y. Ou, L. Wang, J. Jiang, Z. W. Seh, H. Li, Y. Sun, Sci. Bull. 2022, 67, 716–724;
- 37bR. Wang, S. Xin, D. Chao, Z. Liu, J. Wan, P. Xiong, Q. Luo, K. Hua, J. Hao, C. Zhang, Adv. Funct. Mater. 2022, 32, 2207751.
- 38K.-F. Zhang, G.-Q. Zhang, X. Liu, Z.-X. Su, H.-L. Li, J. Power Sources 2006, 157, 528–532.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.