Sterically Controlled Lewis Acid−Base Interaction Toward para-Selective Borylation of Aromatic Aldimines and Benzylamines
Saikat Guria
Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
Search for more papers by this authorDr. Mirja Md Mahamudul Hassan
Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
Search for more papers by this authorSayan Dey
Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
Search for more papers by this authorProf. Dr. Krishna Nand Singh
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
Search for more papers by this authorCorresponding Author
Dr. Buddhadeb Chattopadhyay
Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
Search for more papers by this authorSaikat Guria
Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
Search for more papers by this authorDr. Mirja Md Mahamudul Hassan
Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
Search for more papers by this authorSayan Dey
Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
Search for more papers by this authorProf. Dr. Krishna Nand Singh
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
Search for more papers by this authorCorresponding Author
Dr. Buddhadeb Chattopadhyay
Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
Search for more papers by this authorAbstract
Site-selective C−H bond functionalization of arenes at the para position remains extremely challenging primarily due to its relative inaccessibility from the catalytic site. As a consequence, it is significantly restricted to limited molecular scaffolds. Herein, we report a method for the para-C−H borylation of aromatic aldimines and benzylamines using commercially available ligands under iridium catalysis. The established method displays excellent para selectivity for variously substituted aromatic aldimines, benzylamines and bioactive molecules. Based on several control experiments, it is proposed that a Lewis acid−base interaction between the nitrogen and boron functionality guides the para selectivity via a steric shield for the aromatic aldimines, where Bpin acts as a transient directing group. However, the steric shield of the in situ generated N−Bpin moiety controlled the overall selectivity for the para borylation of benzylamines.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409010-sup-0001-misc_information.pdf21.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012, 51, 8960–9009;
- 1bT. Brueckl, R. D. Baxter, Y. Ishihara, P. S. Baran, Acc. Chem. Res. 2012, 45, 826–839;
- 1cW. R. Gutekunst, P. S. Baran, Chem. Soc. Rev. 2011, 40, 1976–1991;
- 1dL. McMurray, F. O'Hara, M. J. Gaunt, Chem. Soc. Rev. 2011, 40, 1885–1898.
- 2
- 2aM. M. M. Hassan, S. Guria, S. Dey, J. Das, B. Chattopadhyay, Sci. Adv. 2023, 9, eadg3311;
- 2bZ. Zhang, K. Tanaka, J.-Q. Yu, Nature 2017, 543, 538–542;
- 2cS. K. Sinha, S. Guin, S. Maiti, J. P. Biswas, S. Porey, D. Maiti, Chem. Rev. 2022, 122, 5682–5841;
- 2dM. T. Mihai, G. R. Genov, R. J. Phipps, Chem. Soc. Rev. 2018, 47, 149–171.
- 3
- 3aA. Dey, S. Maity, D. Maiti, Chem. Commun. 2016, 52, 12398–12414;
- 3bJ. Chaturvedi, M. M. M. Hassan, C. Haldar, B. Chattopadhyay, Handbook of C−H Bond Functionalization 2022, pp. 1–19.
- 4
- 4aJ. L. Segura, N. Martín, J. Mater. Chem. 2000, 10, 2403–2435;
- 4bT. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev. 2016, 45, 546–576;
- 4cL. Guillemard, N. Kaplaneris, L. Ackermann, M. J. Johansson, Nat. Chem. Rev. 2011, 5, 522–545.
- 5For the template directed para C−H functionalization, see:
- 5aS. Bag, T. Patra, A. Modak, A. Deb, S. Maity, U. Dutta, A. Dey, R. Kancherla, A. Maji, A. Hazra, M. Bera, D. Maiti, J. Am. Chem. Soc. 2015, 137, 11888–11891;
- 5bM. Li, M. Shang, H. Xu, X. Wang, H.-X. Dai, J.-Q. Yu, Org. Lett. 2019, 21, 540–544;
- 5cN. Y. S. Lam, Z. Fan, K. Wu, H. S. Park, S. Y. Shim, D. A. Strassfeld, J.-Q. Yu, J. Am. Chem. Soc. 2022, 144, 2793–2803;
- 5dH. Shi, Y. Lu, J. Weng, K. L. Bay, X. Chen, K. Tanaka, P. Verma, K. N. Houk, J.-Q. Yu, Nat. Chem. 2020, 12, 399–404.
- 6For the steric induced para C−H functionalization, see:
- 6aH. Hata, S. Yamaguchi, G. Mori, S. Nakazono, T. Katoh, K. Takatsu, S. Hiroto, H. Shinokubo, A. Osuka, Chem. Asian J. 2007, 2, 849–859;
- 6bY. Saito, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2015, 137, 5193–5198;
- 6cY. Saito, K. Yamanoue, Y. Segawa, K. Itami, Chem 2020, 6, 985–993;
- 6dM. E. Hoque, R. Bisht, A. Unnikrishnan, S. Dey, M. M. M. Hassan, S. Guria, R. N. Rai, R. B. Sunoj, B. Chattopadhyay, Angew. Chem. Int. Ed. 2022, 61, e202203539;
- 6eS. Okumura, S. Tang, T. Saito, K. Semba S Sakaki, Y. Nakao, J. Am. Chem. Soc. 2016, 138, 14699–14704.
- 7For the weak interaction mediated para C−H functionalization, see:
- 7aM. E. Hoque, R. Bisht, C. Haldar, B. Chattopadhyay, J. Am. Chem. Soc. 2017, 139, 7745–7748;
- 7bB. Lee, M. T. Mihai, V. Stojalnikova, R. J. Phipps, J. Org. Chem. 2019, 84, 13124–13134;
- 7cW. Chang, Y. Chen, S. Lu, H. Jiao, Y. Wang, T. Zheng, Z. Shi, Y. Han, Y. Lu, Y. Wang, Y. Pan, J. .-Q. Yu, K. N. Houk, F. Liu, Y. Liang, Chem 2022, 8, 1775–1788;
- 7dY. Wang, W. Chang, S. Qin, H. Ang, J. Ma, S. Lu, Y. Liang, Angew. Chem. Int. Ed. 2022, 61, e202206797;
- 7eJ. L. Douthwaite, R. J. Phipps, Tetrahedron 2022, 117–118, 132831;
- 7fS. Lu, T. Zheng, J. Ma, Z. Deng, S. Qin, Y. Chen, Y. Liang, Angew. Chem. Int. Ed. 2022, 61, e202201285.
- 8For the combined steric and weak interaction mediated para C−H functionalization, see:
- 8aL. Yang, K. Semba, Y. Nakao, Angew. Chem. Int. Ed. 2017, 56, 4853–4857;
- 8bM. T. Mihai, B. D. Williams, R. J. Phipps, J. Am. Chem. Soc. 2019, 141, 15477–15482;
- 8cJ. R. M. Bastidas, A. Chhabra, Y. Feng, T. J. Oleskey, M. R. Smith III, R. E. Maleczka, ACS Catal. 2022, 12, 2694–2705;
- 8dC. Haldar, R. Bisht, J. Chaturvedi, S. Guria, M. M. M. Hassan, B. Ram, B. Chattopadhyay, Org. Lett. 2022, 24, 8147–8152;
- 8eJ. R. M. Bastidas, T. J. Oleskey, S. L. Miller, M. R. Smith III, R. E. Maleczka, J. Am. Chem. Soc. 2019, 141, 15483–15487.
- 9L. Li, D. Huang, C. Shi, G. Yan, Adv. Synth. Catal. 2019, 361, 1958–1984.
- 10H. Fujino, T. Fukuda, M. Nagatomo, M. Inoue, J. Am. Chem. Soc. 2020, 142, 13227–13234.
- 11C. Gampe, V. A. Verma, J. Med. Chem. 2020, 63, 14357–14381.
- 12J. Hubert, Z. Münzbergová, A. Santino, Pest Manage. Sci. 2008, 64, 57–64.
- 13Y. H. Huang, J. A. Gladysz, J. Chem. Educ. 1988, 65, 298.
- 14Z. Yuan, J. Liao, H. Jiang, P. Coa, Y. Li, RSC Adv. 2020, 10, 35433–35448.
- 15
- 15aH. M. L. Davies, J. D. Bois, J.-Q. Yu, Chem. Soc. Rev. 2011, 40, 1855–1856;
- 15bR. H. Crabtree, A. Lei, Chem. Rev. 2017, 117, 8481–8482;
- 15cU. Dhawa, N. Kaplaneris, L. Ackermann, Org. Chem. Front. 2021, 8, 4886–4913;
- 15dG. Meng, N. Y. S. Lam, E. L. Lucas, T. G. Saint-Denis, P. Verma, N. Chekshin, J.-Q. Yu, J. Am. Chem. Soc. 2020, 142, 10571–10591;
- 15eT. Dalton, T. Faber, F. Glorius, ACS Cent. Sci. 2021, 7, 245–261.
- 16
- 16aX.-H. Liu, H. Park, J.-H. Hu, Y. Hu, Q.-L. Zhang, B.-L. Wang, B. Sun, K.-S. Yeung, F.-L. Zhang, J.-Q. Yu, J. Am. Chem. Soc. 2017, 139, 888–896;
- 16bJ. Luo, Q. Fu, Adv. Synth. Catal. 2021, 363, 3868–3878;
- 16cR. Bisht, B. Chattopadhyay, J. Am. Chem. Soc. 2016, 138, 84–87;
- 16dS. Rej N Chatani, J. Am. Chem. Soc. 2021, 143, 2920–2929.
- 17M. E. Farmer, P. Wang, H. Shi, J.-Q. Yu, ACS Catal. 2018, 8, 7362–7367.
- 18
- 18aS. Xie, S. Li, W. Ma, X. Xu, Z. Jin, Chem. Commun. 2019, 55, 12408–12411;
- 18bS. Bag, S. Jana, S. Pradhan, S. Bhowmick, N. Goswami, S. K. Sinha, D. Maiti, Nat. Commun. 2021, 12, 1393.
- 19During submission of this manuscript, an excellent report appeared for the para functionalization of arenes using a super bulky silane as a protecting group: G. Ju, Z. Huang, Y. Zhao, Nat. Commun. 2024, 15, 2847.
- 20For selected reviews on borylation chemistry, see:
- 20aR. Bisht, C. Haldar, M. M. M. Hassan, M. E. Hoque, J. Chaturvedi, B. Chattopadhyay, Chem. Soc. Rev. 2022, 51, 5042–5100;
- 20bI. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890–931;
- 20cC. Haldar, M. E. Hoque, J. Chaturvedi, M. M. M. Hassan, B. Chattopadhyay, Chem. Commun. 2021, 57, 13059–13074;
- 20dA. Ros, R. Fernandez, J. M. Lassaletta, Chem. Soc. Rev. 2014, 43, 3229–3243.
- 21For selected examples of the ortho borylations, see:
- 21aA. Ros, B. Estepa, R. Lopez-Rodríguez, E. Alvarez, R. Fernandez, J. M. Lassaletta, Angew. Chem. Int. Ed. 2011, 50, 11724–11728;
- 21bA. Ros, R. López-Rodríguez, B. Estepa, E. Álvarez, R. Fernández, J. M. Lassaletta, J. Am. Chem. Soc. 2012, 134, 4573–4576;
- 21cM. E. Hoque, M. M. M. Hassan, B. Chattopadhyay, J. Am. Chem. Soc. 2021, 143, 5022–5037;
- 21dT. A. Boebel, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 7534–7535;
- 21eM. M. M. Hassan, B. Mondal, S. Singh, C. Haldar, J. Chaturvedi, R. Bisht, R. B. Sunoj, B. Chattopadhyay, J. Org. Chem. 2022, 87, 4360–4375;
- 21fM. R. Smith III, R. Bisht, C. Haldar, G. Pandey, J. E. Dannatt, B. Ghaffari, R. E. Maleczka, B. Chattopadhyay, ACS Catal. 2018, 8, 6216–6223;
- 21gB. Chattopadhyay, J. E. Dannatt, I. L. A.-de. Sanctis, K. A. Gore, R. E. Maleczka, D. A. Singleton, M. R. Smith III, J. Am. Chem. Soc. 2017, 139, 7864–7871;
- 21hE. Hoque, S. Dey, M. M. M. Hassan, J. Chaturvedi, S. Guria, J. Das, B. Roy, B. Chattopadhyay, Tetrahedron Chem 2022, 3, 100028.
- 22For the selected examples of the meta borylations, see:
- 22aY. Kuninobu, H. Ida, M. Nishi, M. Kanai, Nat. Chem. 2015, 7, 712–717;
- 22bS. Guria, M. M. M. Hassan, J. Ma, S. Dey, Y. Liang, B. Chattopadhyay, Nat. Commun. 2023, 14, 6906;
- 22cH. J. Davis, M. T. Madalina, R. J. Phipps, J. Am. Chem. Soc. 2016, 138, 12759–12762;
- 22dB. Ramadoss, Y. Jin, S. Asako, L. Ilies, Science 2022, 375, 658–663;
- 22eJ. Chaturvedi, C. Haldar, R. Bisht, G. Pandey, B. Chattopadhyay, J. Am. Chem. Soc. 2021, 143, 7604–7611;
- 22fR. Bisht, M. E. Hoque, B. Chattopadhyay, Angew. Chem. Int. Ed. 2018, 57, 15762–15766;
- 22gL. Yang, N. Uemura, Y. Nakao, J. Am. Chem. Soc. 2019, 141, 7972–7979;
- 22hJ. Trouvé, P. Zardi, S. Al-Shehimy, T. Roisnel, R. G. Doria, Angew. Chem. Int. Ed. Engl. 2021, 60, 18006–18013.
- 23Y. S. Sadanandam, K. R. Reddy, S. S. H. Qadri, J. Plant Dis. Prot. 1982, 89, 518–522.
- 24V. Froidevaux, C. Negrell, S. Caillol, J.-P. Pascault, B. Boutevin, Chem. Rev. 2016, 116, 14181–14224.
- 25S. Maignan, J.-P. Guilloteau, S. Pouzieux, Y. M. Choi-Sledeski, M. R. Becker, S. I. Klein, W. R. Ewing, H. W. Pauls, A. P. Spada, V. Mikol, J. Med. Chem. 2000, 43, 3226.
- 26J. E. Gannon, E. O. Bennett, I. U. Onyekwelu, I. N. Izzat, Tribol. Int. 1980, 13, 17–20.
- 27
- 27aW. Zou, L. Gao, J. Cao, Z. Li, G. Li, G. Wang, S. Li, Chem. Eur. J. 2022, 28, e202104004;
- 27bQ. Yin, Y. Soltani, R. L. Melen, M. Oestreich, Organometallics 2017, 36, 2381–2384.
- 28
- 28aF. .-L. Zhang, K. Hong, T. .-J. Li, H. Park, J.-Q. Yu, Science 2016, 351, 252–256;
- 28bX.-H. Liu, H. Park, J.-H. Hu, Y. Hu, Q.-L. Zhang, B.-L. Wang, B. Sun, K.-S. Yeung, F.-L. Zhang, J.-Q. Yu, J. Am. Chem. Soc. 2017, 139, 888–896;
- 28cY.-M. Tian, X.-N. Guo, Z. Wu, A. Friedrich, A. A. Westcott, H. Braunschweig, U. Radius, T. B. Marder, J. Am. Chem. Soc. 2020, 142, 13136–13144.
- 29A. Paramore, S. Frantz, Nat. Rev. Drug Discovery 2003, 2, 611.
- 30S. Guria, M. M. M. Hassan, B. Chattopadhyay, Org. Chem. Front. 2024, 11, 929–953.
- 31H. Tajuddin, P. Harrisson, B. Bitterlich, J. C. Collings, N. Sim, A. S. Batsanov, M. S. Cheung, S. Kawamorita, A. C. Maxwell, L. Shukla, J. Morris, Z. Lin, T. B. Marder, P. G. Steel, Chem. Sci. 2012, 3, 3505–3515.
- 32
- 32aA. J. Roering, L. V. A. Hale, P. A. Squier, M. A. Ringgold, E. R. Wiederspan, T. B. Clark, Org. Lett. 2012, 14, 3558–3561;
- 32bN. Le, N. L. Chuang, C. M. Oliver, A. V. Samoshin, J. T. Hemphill, K. C. Morris, S. N. Hyland, H. Guan, C. E. Webster, T. B. Clark, ACS Catal. 2023, 13, 12877–12893;
- 32cL. V. A. Hale, K. A. McGarry, M. A. Ringgold, T. B. Clark, Organometallics 2015, 34, 51–55;
- 32dK. Orito, A. Horibata, T. Nakamura, H. Ushito, H. Nagasaki, M. Yuguchi, S. Yamashita, M. Tokuda, J. Am. Chem. Soc. 2004, 126, 14342–14343;
- 32eG. Cai, Y. Fu, Y. Li, X. Wan, Z. Shi, J. Am. Chem. Soc. 2007, 129, 7666–7673;
- 32fM. Miura, C.-G. Feng, S. Ma, J.-Q. Yu, Org. Lett. 2013, 15, 5258–5261;
- 32gB. N. Laforteza, K. S. L. Chan, J.-Q. Yu, Angew. Chem. Int. Ed. 2015, 54, 11143–11146.
- 33
- 33aR. Tang, G. Li, J.-Q. Yu, Nature 2014, 507, 215–220;
- 33bZ. Dong, J. Wang, G. Dong, J. Am. Chem. Soc. 2015, 137, 5887–5890;
- 33cQ. Ding, S. Ye, G. Cheng, P. Wang, M. E. Farmer, J.-Q. Yu, J. Am. Chem. Soc. 2017, 139, 417–425;
- 33dP. Wang, M. E. Farmer, J.-Q. Yu, Angew. Chem. Int. Ed. 2017, 56, 5125–5129;
- 33eH. J. Davis, G. R. Genov, R. J. Phipps, Angew. Chem. Int. Ed. 2017, 56, 13351–13355.
- 34W. M. Zeng, Y. H. He, Z. Guan, Org. Lett. 2022, 24, 7178–7182.
- 35Z. M. Fu, J. S. Ye, J. Huang, Org. Lett. 2022, 24, 5874–5878.
- 36C. Ma, C. Q. Zhao, Y. Q. Li, L. P. Zhang, X. T. Xu, K. Zhang, T. S. Mei, Chem. Commun. 2017, 53, 12189–12192.
- 37M. Guentner, E. Uhl, P. Mayer, H. Dube, Chem. Eur. J. 2016, 22, 16433–16436.
- 38D. Kumar, K. K. Raj, M. A. Bailey, T. Alling, T. Parish, D. S. Rawat, Bioorg. Med. Chem. Lett. 2013, 23, 1365–1369.
- 39K. Mori, S. Sueoka, T. Akiyama, J. Am. Chem. Soc. 2011, 133, 2424–2426.
- 40W. Liu, Y. Wang, M. Sun, D. Zhang, M. Zhenga, W. Yang, Chem. Commun. 2013, 49, 6042–6044.
- 41F. Mandrelli, A. Blond, T. James, H. Kim, B. List, Angew. Chem. Int. Ed. 2019, 58, 11479–11482.
- 42C. Y. Wang, Y. H. Liu, S. M. Peng, J. T. Chen, S. T. J. Liu, Organomet. Chem. 2007, 692, 3976–3983.
- 43Y. Miao, V. S. Samuelsen, R. Madsen, Organometallics 2021, 40, 1328–1335.
- 44A. V. Dubrovskiy, C. R. Larock, Org. Lett. 2011, 13, 4136–4139.
- 45Z. Yang, X. Chen, J. Liu, Q. Gui, K. Xie, M. Li, Ze. Tan, Chem. Commun. 2013, 49, 1560–1562.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.