Integrating Multipolar Structures and Carboxyl Groups in sp2-Carbon Conjugated Covalent Organic Frameworks for Overall Photocatalytic Hydrogen Peroxide Production
Haocheng Xu
MOE Key Laboratory of High Performance Polymer Materials & Technology. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 P. R. China
Search for more papers by this authorYandong Wang
MOE Key Laboratory of High Performance Polymer Materials & Technology. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 P. R. China
Search for more papers by this authorYang Xu
MOE Key Laboratory of High Performance Polymer Materials & Technology. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 P. R. China
Search for more papers by this authorQiaomu Wang
MOE Key Laboratory of High Performance Polymer Materials & Technology. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 P. R. China
Search for more papers by this authorMingyan Zhuang
MOE Key Laboratory of High Performance Polymer Materials & Technology. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Qiaobo Liao
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Kai Xi
MOE Key Laboratory of High Performance Polymer Materials & Technology. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 P. R. China
Search for more papers by this authorHaocheng Xu
MOE Key Laboratory of High Performance Polymer Materials & Technology. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 P. R. China
Search for more papers by this authorYandong Wang
MOE Key Laboratory of High Performance Polymer Materials & Technology. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 P. R. China
Search for more papers by this authorYang Xu
MOE Key Laboratory of High Performance Polymer Materials & Technology. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 P. R. China
Search for more papers by this authorQiaomu Wang
MOE Key Laboratory of High Performance Polymer Materials & Technology. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 P. R. China
Search for more papers by this authorMingyan Zhuang
MOE Key Laboratory of High Performance Polymer Materials & Technology. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Qiaobo Liao
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Kai Xi
MOE Key Laboratory of High Performance Polymer Materials & Technology. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 P. R. China
Search for more papers by this authorAbstract
The direct production of hydrogen peroxide (H2O2) through photocatalytic reaction via H2O and O2 is considered as an ideal approach. However, the efficiency of H2O2 generation is generally limited by insufficient charge and mass transfer. Covalent organic framework (COFs) offer a promising platform as metal-free photocatalyst for H2O2 production due to their potential for rational design at the molecular level. Herein, we integrated the multipolar structures and carboxyl groups into COFs to enhance the efficiency of photocatalytic H2O2 production in pure water without any sacrificial agents. The introduction of octupolar and quadrupolar structures, along with an increase of molecular planarity, created efficient oxygen reduction reaction (ORR) sites. Meanwhile, carboxyl groups could not only boost O2 and H2O2 movement via enhancement of pore hydrophilicity, but also promote proton conduction, enabling the conversion to H2O2 from ⋅O2−, which is the crucial intermediate product in H2O2 photocatalysis. Overall, we demonstrate that TACOF-1-COOH, consisting of optimal octupolar and quadrupolar structures, along with enrichment sites (carboxyl groups), exhibited a H2O2 yield rate of 3542 μmol h− 1 g−1 and a solar-to-chemical (SCC) efficiency of 0.55 %. This work provides valuable insights for designing metal-free photocatalysts for efficient H2O2 production.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202408802-sup-0001-misc_information.pdf5.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Liu, Y. Zou, B. Jin, K. Zhang, J. H. Park, ACS Energy Lett. 2019, 4, 3018–3027;
- 1bY. Sun, L. Han, P. Strasser, Chem. Soc. Rev. 2020, 49, 6605–6631.
- 2
- 2aY. Zhao, J. Gao, Z. Yang, L. Li, J. Cui, P. Zhang, C. Hu, C. Diao, W. Choi, ACS Catal. 2023, 13, 2790–2801;
- 2bC. Zhao, Z. Chen, R. Shi, X. Yang, T. Zhang, Adv. Mater. 2020, 32, e1907296;
- 2cT. Liu, Z. Pan, J. J. M. Vequizo, K. Kato, B. Wu, A. Yamakata, K. Katayama, B. Chen, C. Chu, K. Domen, Nat. Commun. 2022, 13, 1034.
- 3
- 3aZ. Wei, M. Liu, Z. Zhang, W. Yao, H. Tan, Y. Zhu, Energy Environ. Sci. 2018, 11, 2581–2589;
- 3bL. Liu, M. Y. Gao, H. Yang, X. Wang, X. Li, A. I. Cooper, J. Am. Chem. Soc. 2021, 143, 19287–19293;
- 3cS. Wu, H. Yu, S. Chen, X. Quan, ACS Catal. 2020, 10, 14380–14389;
- 3dY. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Nat. Mater. 2019, 18, 985–993.
- 4
- 4aS. J. Lyle, P. J. Waller, O. M. Yaghi, Trends Chem. 2019, 1, 172–184;
- 4bD. Rodriguez-San-Miguel, F. Zamora, Chem. Soc. Rev. 2019, 48, 4375–4386;
- 4cS. Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548–568.
- 5
- 5aH. Yang, R. Zhao, J. Wang, X. Yin, Z. Lu, L. Hou, ACS Materials Lett. 2023, 5, 2877–2886;
- 5bJ. Xu, C. Yang, S. Bi, W. Wang, Y. He, D. Wu, Q. Liang, X. Wang, F. Zhang, Angew. Chem. Int. Ed. 2020, 59, 23845–23853;
- 5cF. Liu, P. Zhou, Y. Hou, H. Tan, Y. Liang, J. Liang, Q. Zhang, S. Guo, M. Tong, J. Ni, Nat. Commun. 2023, 14, 4344.
- 6
- 6aX. Jing, M. Zhang, Z. Mu, P. Shao, Y. Zhu, J. Li, B. Wang, X. Feng, J. Am. Chem. Soc. 2023, 145, 21077–21085;
- 6bS. Tao, L. Zhai, A. D. Dinga Wonanke, M. A. Addicoat, Q. Jiang, D. Jiang, Nat. Commun. 2020, 11, 1981;
- 6cQ. Sun, Y. Tang, B. Aguila, S. Wang, F. S. Xiao, P. K. Thallapally, A. M. Al-Enizi, A. Nafady, S. Ma, Angew. Chem. Int. Ed. 2019, 58, 8670–8675.
- 7
- 7aX. Liu, R. Qi, S. Li, W. Liu, Y. Yu, J. Wang, S. Wu, K. Ding, Y. Yu, J. Am. Chem. Soc. 2022, 144, 23396–23404;
- 7bM. Y. Yang, S. B. Zhang, M. Zhang, Z. H. Li, Y. F. Liu, X. Liao, M. Lu, S. L. Li, Y. Q. Lan, J. Am. Chem. Soc. 2024, 146, 3396–3404;
- 7cZ. Liu, X. Yang, Z. Yang, X. Su, Z. Xie, W. Chen, W. Zhang, L. Chen, Appl. Catal. B 2022, 312, 121406 .
- 8
- 8aY. Hou, P. Zhou, F. Liu, Y. Lu, H. Tan, Z. Li, M. Tong, J. Ni, Angew. Chem. Int. Ed. 2024, e202318562;
- 8bQ. Liao, Q. Sun, H. Xu, Y. Wang, Y. Xu, Z. Li, J. Hu, D. Wang, H. Li, K. Xi, Angew. Chem. Int. Ed. 2023, 62, e202310556;
- 8cS. Chai, X. Chen, X. Zhang, Y. Fang, R. S. Sprick, X. Chen, Environ. Sci.-Nano 2022, 9, 2464–2469;
- 8dC. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C. V. Chandran, S. Borgmans, S. M. J. Rogge, K. Leus, C. V. Stevens, J. A. Martens, V. Van Speybroeck, E. Breynaert, A. Thomas, P. Van Der Voort, J. Am. Chem. Soc. 2020, 142, 20107–20116;
- 8eC. Qin, X. Wu, L. Tang, X. Chen, M. Li, Y. Mou, B. Su, S. Wang, C. Feng, J. Liu, X. Yuan, Y. Zhao, H. Wang, Nat. Commun. 2023, 14, 5238.
- 9C. Qin, X. Wu, L. Tang, X. Chen, M. Li, Y. Mou, B. Su, S. Wang, C. Feng, J. Liu, X. Yuan, Y. Zhao, H. Wang, Nat. Commun. 2023, 14, 5238.
- 10
- 10aS. Easwaramoorthi, J. Y. Shin, S. Cho, P. Kim, Y. Inokuma, E. Tsurumaki, A. Osuka, D. Kim, Chem. Eur. J. 2009, 15, 12005–12017;
- 10bM. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, Y. Bretonnière, J. Am. Chem. Soc. 2012, 134, 3655–3658;
- 10cJ. Xu, C. Yang, S. Bi, W. Wang, Y. He, D. Wu, Q. Liang, X. Wang, F. Zhang, Angew. Chem. Int. Ed. 2020, 59, 23845–23853;
- 10dM. Yang, C. Mo, L. Fang, J. Li, Z. Yuan, Z. Chen, Q. Jiang, X. Chen, D. Yu, Adv. Funct. Mater. 2020, 30, 2000516;
- 10eF. Liu, P. Zhou, Y. Hou, H. Tan, Y. Liang, J. Liang, Q. Zhang, S. Guo, M. Tong, J. Ni, Nat. Commun. 2023, 14, 4344.
- 11
- 11aF. Terenziani, C. Sissa, A. Painelli, J. Phy. Chem. B 2008, 112, 5079–5087;
- 11bH. M. Kim, B. R. Cho, J. Mater. Chem. 2009, 19, 7402–7409;
- 11cO. Maury, H. Le Bozec, Acc. Chem. Res. 2005, 38, 691–704.
- 12C. Mo, M. Yang, F. Sun, J. Jian, L. Zhong, Z. Fang, J. Feng, D. Yu, Adv. Sci. 2020, 7, 1902988.
- 13
- 13aP. Wang, Y. Wu, W. Lin, L. Wang, J. Mater. Chem. A 2022, 10, 23058–23067;
- 13bQ. G. Zhai, C. Mao, X. Zhao, Q. Lin, F. Bu, X. Chen, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2015, 54, 7886–7890;
- 13cL. Xu, L. Li, Z. Hu, J. C. Yu, Appl. Catal. B 2023, 328,122490.
- 14
- 14aF. Zhang, X. Dong, Y. Wang, X. Lang, Small 2023, 19, 2302456;
- 14bR. Chen, Y. Wang, Y. Ma, A. Mal, X.-Y. Gao, L. Gao, L. Qiao, X.-B. Li, L.-Z. Wu, C. Wang, Nat. Commun. 2021, 12, 1354.
- 15J. Xu, C. Yang, S. Bi, W. Wang, Y. He, D. Wu, Q. Liang, X. Wang, F. Zhang, Angew. Chem. Int. Ed. 2020, 59, 23845–23853.
- 16
- 16aT. Yang, Y. Chen, Y. Wang, X. Peng, A. Kong, ACS Appl. Mater. Interfaces 2023, 15, 8066–8075;
- 16bZ. Zhou, M. Sun, Y. Zhu, P. Li, Y. Zhang, M. Wang, Y. Shen, Appl. Catal. B 2023, 334, 122862;
- 16cL. Zhai, Z. Xie, C.-X. Cui, X. Yang, Q. Xu, X. Ke, M. Liu, L.-B. Qu, X. Chen, L. Mi, Chem. Mater. 2022, 34, 5232–5240.
- 17
- 17aN. S. Makarov, S. Mukhopadhyay, K. Yesudas, J.-L. Brédas, J. W. Perry, A. Pron, M. Kivala, K. Müllen, J. Phy. Chem. A 2012, 116, 3781–3793;
- 17bR. S. Sprick, B. Bonillo, R. Clowes, P. Guiglion, N. J. Brownbill, B. J. Slater, F. Blanc, M. A. Zwijnenburg, D. J. Adams, A. I. Cooper, Angew. Chem. Int. Ed. 2016, 55, 1792–1796;
- 17cT. Yoshihara, S. I. Druzhinin, K. A. Zachariasse, J. Am. Chem. Soc. 2004, 126, 8535–8539;
- 17dS. Yang, D. Streater, C. Fiankor, J. Zhang, J. Huang, J. Am. Chem. Soc. 2021, 143, 1061–1068.
- 18D. Chen, W. Chen, Y. Wu, L. Wang, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 2023, 62, e202217479.
- 19L. Li, X. Lv, Y. Xue, H. Shao, G. Zheng, Q. Han, Angew. Chem. Int. Ed. 2024, 63, e202320218.
- 20Y. Zhao, Y. Liu, J. Cao, H. Wang, M. Shao, H. Huang, Y. Liu, Z. Kang, Appl. Catal. B 2020, 278, 119289.
- 21S. Ghosh, A. Nakada, M. A. Springer, T. Kawaguchi, K. Suzuki, H. Kaji, I. Baburin, A. Kuc, T. Heine, H. Suzuki, R. Abe, S. Seki, J. Am. Chem. Soc. 2020, 142, 9752–9762.
- 22C. Wu, Z. Teng, C. Yang, F. Chen, H. B. Yang, L. Wang, H. Xu, B. Liu, G. Zheng, Q. Han, Adv. Mater. 2022, 34, 2110266.
- 23
- 23aY. Luo, B. Zhang, C. Liu, D. Xia, X. Ou, Y. Cai, Y. Zhou, J. Jiang, B. Han, Angew. Chem. Int. Ed. 2023, 62, e202305355;
- 23bY. Liu, W.-K. Han, W. Chi, Y. Mao, Y. Jiang, X. Yan, Z.-G. Gu, Appl. Catal. B 2023, 331, 122691.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.