3D Lead-Organoselenide-Halide Perovskites and their Mixed-Chalcogenide and Mixed-Halide Alloys
Jiayi Li
Department of Chemistry, Stanford University, Stanford, California, 94305 United States
Search for more papers by this authorDr. Yang Wang
Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, California, 94720 United States
Search for more papers by this authorDr. Santanu Saha
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU United Kingdom
Institut de Recherche sur les Ceramiques (IRCER), UMR CNRS 7315, Université de Limoges, 12 Rue Atlantis, Limoges, 87068 France
Search for more papers by this authorDr. Zhihengyu Chen
Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794 United States
Search for more papers by this authorJan Hofmann
Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794 United States
Search for more papers by this authorJason Misleh
Department of Chemistry, Stanford University, Stanford, California, 94305 United States
Search for more papers by this authorProf. Karena W. Chapman
Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794 United States
Search for more papers by this authorProf. Jeffrey A. Reimer
Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, California, 94720 United States
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 United States
Search for more papers by this authorCorresponding Author
Prof. Marina R. Filip
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU United Kingdom
Search for more papers by this authorCorresponding Author
Prof. Hemamala I. Karunadasa
Department of Chemistry, Stanford University, Stanford, California, 94305 United States
Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, California, 94025 United States
Search for more papers by this authorJiayi Li
Department of Chemistry, Stanford University, Stanford, California, 94305 United States
Search for more papers by this authorDr. Yang Wang
Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, California, 94720 United States
Search for more papers by this authorDr. Santanu Saha
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU United Kingdom
Institut de Recherche sur les Ceramiques (IRCER), UMR CNRS 7315, Université de Limoges, 12 Rue Atlantis, Limoges, 87068 France
Search for more papers by this authorDr. Zhihengyu Chen
Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794 United States
Search for more papers by this authorJan Hofmann
Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794 United States
Search for more papers by this authorJason Misleh
Department of Chemistry, Stanford University, Stanford, California, 94305 United States
Search for more papers by this authorProf. Karena W. Chapman
Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794 United States
Search for more papers by this authorProf. Jeffrey A. Reimer
Department of Chemical and Biomolecular Engineering, College of Chemistry, UC Berkeley, Berkeley, California, 94720 United States
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 United States
Search for more papers by this authorCorresponding Author
Prof. Marina R. Filip
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU United Kingdom
Search for more papers by this authorCorresponding Author
Prof. Hemamala I. Karunadasa
Department of Chemistry, Stanford University, Stanford, California, 94305 United States
Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, California, 94025 United States
Search for more papers by this authorAbstract
We incorporate Se into the 3D halide perovskite framework using the zwitterionic ligand: SeCYS (+NH3(CH2)2Se−), which occupies both the X− and A+ sites in the prototypical ABX3 perovskite. The new organoselenide-halide perovskites: (SeCYS)PbX2 (X=Cl, Br) expand upon the recently discovered organosulfide-halide perovskites. Single-crystal X-ray diffraction and pair distribution function analysis reveal the average structures of the organoselenide-halide perovskites, whereas the local lead coordination environments and their distributions were probed through solid-state 77Se and 207Pb NMR, complemented by theoretical simulations. Density functional theory calculations illustrate that the band structures of (SeCYS)PbX2 largely resemble those of their S analogs, with similar band dispersion patterns, yet with a considerable band gap decrease. Optical absorbance measurements indeed show band gaps of 2.07 and 1.86 eV for (SeCYS)PbX2 with X=Cl and Br, respectively. We further demonstrate routes to alloying the halides (Cl, Br) and chalcogenides (S, Se) continuously tuning the band gap from 1.86 to 2.31 eV–straddling the ideal range for tandem solar cells or visible-light photocatalysis. The comprehensive description of the average and local structures, and how they can fine-tune the band gap and potential trap states, respectively, establishes the foundation for understanding this new perovskite family, which combines solid-state and organo-main-group chemistry.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202408443-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. D. Donaldson, D. Laughlin, S. D. Ross, J. Silver, J. Chem. Soc. Dalton Trans. 1973, 1985–1988.
- 2R. Matheu, J. A. Vigil, E. J. Crace, H. I. Karunadasa, Trends Chem. 2022, 4, 206–219.
- 3A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051.
- 4M. A. Green, A. Ho-Baillie, H. J. Snaith, Nature Photon 2014, 8, 506–514.
- 5J. Seo, J. H. Noh, S. I. Seok, Acc. Chem. Res. 2016, 49, 562–572.
- 6M. S. G. Hamed, G. T. Mola, Crit. Rev. Solid State Mater. Sci. 2020, 45, 85–112.
- 7B. Chen, X. Zheng, Y. Bai, N. P. Padture, J. Huang, Adv. Energy Mater. 2017, 7, 1602400.
- 8E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, M. D. McGehee, Chem. Sci. 2014, 6, 613–617.
- 9M. C. Brennan, A. Ruth, P. V. Kamat, M. Kuno, Trends Chem. 2020, 2, 282–301.
- 10J. Li, Z. Chen, S. Saha, J. K. Utterback, M. L. Aubrey, R. Yuan, H. L. Weaver, N. S. Ginsberg, K. W. Chapman, M. R. Filip, H. I. Karunadasa, J. Am. Chem. Soc. 2022, 144, 22403–22408.
- 11R. W. Crisp, G. F. Pach, J. M. Kurley, R. M. France, M. O. Reese, S. U. Nanayakkara, B. A. MacLeod, D. V. Talapin, M. C. Beard, J. M. Luther, Nano Lett. 2017, 17, 1020–1027.
- 12T. Umebayashi, K. Asai, T. Kondo, A. Nakao, Phys. Rev. B 2003, 67, 155405.
- 13S. Suresh, A. R. Uhl, Adv. Energy Mater. 2021, 11, 2003743.
- 14T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D. B. Mitzi, Adv. Energy Mater. 2013, 3, 34–38.
- 15M. L. Agiorgousis, Y.-Y. Sun, D.-H. Choe, D. West, S. Zhang, Advanced Theory and Simulations 2019, 2, 1800173.
- 16M.-G. Ju, J. Dai, L. Ma, X. C. Zeng, Adv. Energy Mater. 2017, 7, 1700216.
- 17Y.-Y. Sun, M. L. Agiorgousis, P. Zhang, S. Zhang, Nano Lett. 2015, 15, 581–585.
- 18H. Zhang, X. Wu, K. Ding, L. Xie, K. Yang, C. Ming, S. Bai, H. Zeng, S. Zhang, Y.-Y. Sun, Chem. Mater. 2023, DOI 10.1021/acs.chemmater.2c03676.
- 19Z. Li, K.-H. Xue, J. Wang, J.-G. Li, X. Ao, H. Sun, X. Song, W. Lei, Y. Cao, C. Wang, ACS Appl. Mater. Interfaces 2020, 12, 41259–41268.
- 20S. A. Siddiqi, A. Aslam, S. Naseem, Mod. Phys. Lett. B 2001, 15, 973–980.
- 21Deposition Number 2270130 (for (SeCYS)PbCl2) Contains the Supplementary Crystallographic Data for This Paper. These Data Are Provided Free of Charge by the Joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures Service., n.d.
- 22C. R. Morelock, B. K. Greve, M. Cetinkol, K. W. Chapman, P. J. Chupas, A. P. Wilkinson, Chem. Mater. 2013, 25, 1900–1904.
- 23R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751–767.
- 24O. Yaffe, Y. Guo, L. Z. Tan, D. A. Egger, T. Hull, C. C. Stoumpos, F. Zheng, T. F. Heinz, L. Kronik, M. G. Kanatzidis, J. S. Owen, A. M. Rappe, M. A. Pimenta, L. E. Brus, Phys. Rev. Lett. 2017, 118, 136001.
- 25K. Nakada, Y. Matsumoto, Y. Shimoi, K. Yamada, Y. Furukawa, Molecules 2019, 24, 626.
- 26S. Bloxham, O. Eicher-Lorka, R. Jakubėnas, G. Niaura, Spectrosc. Lett. 2003, 36, 211–226.
- 27L. Riauba, G. Niaura, O. Eicher-Lorka, E. Butkus, J. Phys. Chem. A 2006, 110, 13394–13404.
- 28L. S. Wong, V. L. Vilker, W. T. Yap, V. Reipa, Langmuir 1995, 11, 4818–4822.
- 29D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grasselli, in The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Elsevier, 1991, pp. 225–250.
10.1016/B978-0-08-057116-4.50020-1 Google Scholar
- 30J. R. Durig, H. V. Phan, M. M. Bergana, M. S. Rollins, J. M. Gulick, J. D. Odom, S. D. Hudson, Spectrochim. Acta Part A 1994, 50, 399–419.
- 31A. Kudelski, W. Hill, Langmuir 1999, 15, 3162–3168.
- 32D. Stefańska, M. Ptak, M. Mączka, Molecules 2022, 27, 7949.
- 33J. K. Harada, N. Charles, K. R. Poeppelmeier, J. M. Rondinelli, Adv. Mater. 2019, 31, 1805295.
- 34H. Kageyama, K. Hayashi, K. Maeda, J. P. Attfield, Z. Hiroi, J. M. Rondinelli, K. R. Poeppelmeier, Nat. Commun. 2018, 9, 772.
- 35H. Duddeck, in Annual Reports on NMR Spectroscopy, Academic Press, 2004, pp. 105–166.
10.1016/S0066-4103(04)52003-3 Google Scholar
- 36N. P. Luthra, J. D. Odom, in Organic Selenium and Tellurium Compounds, John Wiley & Sons, Ltd, 1986, pp. 189–241.
10.1002/9780470771761.ch6 Google Scholar
- 37D. J. Kubicki, S. D. Stranks, C. P. Grey, L. Emsley, Nat. Chem. Rev. 2021, 5, 624–645.
- 38L. Piveteau, V. Morad, M. V. Kovalenko, J. Am. Chem. Soc. 2020, 142, 19413–19437.
- 39B. Wrackmeyer, Application of 207Pb NMR Parameters, Elsevier Science & Technology Books, 2002.
10.1016/S0066-4103(02)47037-8 Google Scholar
- 40A. Karmakar, A. M. Askar, G. M. Bernard, V. V. Terskikh, M. Ha, S. Patel, K. Shankar, V. K. Michaelis, Chem. Mater. 2018, 30, 2309–2321.
- 41A. M. Askar, A. Karmakar, G. M. Bernard, M. Ha, V. V. Terskikh, B. D. Wiltshire, S. Patel, J. Fleet, K. Shankar, V. K. Michaelis, J. Phys. Chem. Lett. 2018, 9, 2671–2677.
- 42A. Karmakar, M. S. Dodd, X. Zhang, M. S. Oakley, M. Klobukowski, V. K. Michaelis, Chem. Commun. 2019, 55, 5079–5082.
- 43D. Massiot, I. Farnan, N. Gautier, D. Trumeau, A. Trokiner, J. P. Coutures, Solid State Nucl. Magn. Reson. 1995, 4, 241–248.
- 44A. Senocrate, I. Moudrakovski, G. Y. Kim, T.-Y. Yang, G. Gregori, M. Grätzel, J. Maier, Angew. Chem. Int. Ed. 2017, 56, 7755–7759.
- 45A. M. A. Leguy, J. M. Frost, A. P. McMahon, V. G. Sakai, W. Kockelmann, C. Law, X. Li, F. Foglia, A. Walsh, B. C. O'Regan, J. Nelson, J. T. Cabral, P. R. F. Barnes, Nat. Commun. 2015, 6, 7124.
- 46P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864–B871.
- 47J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 48M. I. Aroyo, D. Orobengoa, G. de la Flor, E. S. Tasci, J. M. Perez-Mato, H. Wondratschek, Acta Crystallogr. Sect. A 2014, 70, 126–137.
- 49J. Li, R. Matheu, F. Ke, Z. Liu, Y. Lin, H. I. Karunadasa, Angew. Chem. Int. Ed. 2023, 62, e202300957.
- 50S. Park, W. J. Chang, C. W. Lee, S. Park, H.-Y. Ahn, K. T. Nam, Nat. Energy 2016, 2, 1–8.
- 51A. Walsh, S. D. Stranks, ACS Energy Lett. 2018, 3, 1983–1990.
- 52J. Mizusaki, K. Arai, K. Fueki, Solid State Ionics 1983, 11, 203–211.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.