Photocatalytic Multisite Functionalization of Unactivated Terminal Alkenes by Merging Polar Cycloaddition and Radical Ring-Opening Process
Dr. Haidong Liu
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000 China
Search for more papers by this authorYi-Peng Wang
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorHui Wang
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorKewei Ren
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorLongfei Liu
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorLuzhen Dang
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorDr. Cheng-Qiang Wang
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorCorresponding Author
Prof. Chao Feng
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorDr. Haidong Liu
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000 China
Search for more papers by this authorYi-Peng Wang
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorHui Wang
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorKewei Ren
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorLongfei Liu
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorLuzhen Dang
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorDr. Cheng-Qiang Wang
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorCorresponding Author
Prof. Chao Feng
Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorAbstract
Although highly appealing for rapid access of molecular complexity, multi-functionalization of alkenes that allows incorporation of more than two functional groups remains a prominent challenge. Herein, we report a novel strategy that merges dipolar cycloaddition with photoredox promoted radical ring-opening remote C(sp3)−H functionalization, thus enabling a smooth 1,2,5-trifunctionalization of unactivated alkenes. A highly regioselective [3+2] cycloaddition anchors a reaction trigger onto alkene substrates. The subsequent halogen atom transfer (XAT) selectively initiates ring-opening process, which is followed by a series of 1,5-hydrogen atom transfer (1,5-HAT) and intermolecular fluorine atom transfer (FAT) events. With this method, site-selective introduction of three different functional groups is accomplished and a broad spectrum of valuable β-hydroxyl-ϵ-fluoro-nitrile products are synthesized from readily available terminal alkenes.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202407928-sup-0001-misc_information.pdf20.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. I. McDonald, G. Liu, S. S. Stahl, Chem. Rev. 2011, 111, 2981–3019.
- 2K. P. S. Cheung, S. Sarkar, V. Gevorgyan, Chem. Rev. 2022, 122, 1543–1625.
- 3
- 3aX. Ma, Q. Zhang, W. Zhang, Molecules 2023, 28, 3027;
- 3bJ.-M. Xi, W.-W. Liao, Org. Chem. Front. 2022, 9, 4490–4506.
- 4L. Zhang, Z. Huang, J. Am. Chem. Soc. 2015, 137, 15600–15603.
- 5
- 5aG. Zhao, S. Lim, D. G. Musaev, M.-Y. Ngai, J. Am. Chem. Soc. 2023, 145, 8275–8284;
- 5bR. Liu, Y. Tian, J. Wang, Z. Wang, X. Li, C. Zhao, R. Yao, S. Li, L. Yuan, J. Yang, D. Shi, Sci. Adv. 2022, 8, eabq8596;
- 5cK. Jana, A. Studer, Org. Lett. 2022, 24, 1100–1104;
- 5dK. Jana, A. Bhunia, A. Studer, Chem 2020, 6, 512–522;
- 5eC. Li, S. Liao, S. Chen, N. Chen, F. Zhang, K. Yang, Q. Song, Nat. Commun. 2022, 13, 1784;
- 5fJ. Wang, Y. Wang, J. Li, Z. Wei, J. Feng, D. Du, Chem. Commun. 2023, 59, 5395–5398;
- 5gK. Guo, C. Gu, Y. Li, X. Xie, H. Zhang, K. Chen, Y. Zhu, Adv. Synth. Catal. 2022, 364, 1388–1393;
- 5hC. Chang, H. Zhang, X. Wu, C. Zhu, Chem. Commun. 2022, 58, 1005–1008;
- 5iK. Guo, Adv. Synth. Catal. 2023, 365, 3616–3621;
- 5jB. Li, D. Xing, X. Li, S. Chang, H. Jiang, L. Huang, Org. Lett. 2023, 25, 6633–6637;
- 5kF. Paulus, C. Stein, C. Heusel, T. J. Stoffels, C. G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 2023, 145, 23814–23823.
- 6
- 6aZ.-L. Li, X.-H. Li, N. Wang, N.-Y. Yang, X.-Y. Liu, Angew. Chem. Int. Ed. 2016, 55, 15100–15104;
- 6bL. Li, Z.-L. Li, F.-L. Wang, Z. Guo, Y.-F. Cheng, N. Wang, X.-W. Dong, C. Fang, J. Liu, C. Hou, B. Tan, X.-Y. Liu, Nat. Commun. 2016, 7, 13852;
- 6cL. Li, Z.-L. Li, Q.-S. Gu, N. Wang, X.-Y. Liu, Sci. Adv. 2017, 3, e1701487;
- 6dM. Kischkewitz, K. Okamoto, C. Mück-Lichtenfeld, A. Studer, Science 2017, 355, 936–938;
- 6eX. Tang, A. Studer, Angew. Chem. Int. Ed. 2018, 57, 814–817;
- 6fC. You, A. Studer, Angew. Chem. Int. Ed. 2020, 59, 17245–17249;
- 6gD. Wang, C. Muck-Lichtenfeld, C. G. Daniliuc, A. Studer, J. Am. Chem. Soc. 2021, 143, 9320–9326;
- 6hX. Wu, C. Zhu, Acc. Chem. Res. 2020, 53, 1620–1636;
- 6iY. Wei, X. Wu, C. Zhu, Synlett 2022, 33, 1017–1028;
- 6jZ. Ma, X. Wu, C. Zhu, Chem. Rec. 2023, 23, e202200221.
- 7
- 7aC. Liu, T. Feng, X. Wu, C. Zhu, ACS Catal. 2023, 13, 8394–8401;
- 7bW. Shu, E. Merino, C. Nevado, ACS Catal. 2018, 8, 6401–6406;
- 7cD. Wang, K. Jana, A. Studer, Org. Lett. 2021, 23, 5876–5879;
- 7dL. Huo, X. Li, Y. Zhao, L. Li, L. Chu, J. Am. Chem. Soc. 2023, 145, 9876–9885;
- 7eT. Hashimoto, D. Hirose, T. Taniguchi, Angew. Chem. Int. Ed. 2014, 53, 2730–2734;
- 7fT. Shang, J. Zhang, Y. Zhang, F. Zhang, X.-S. Li, G. Zhu, Org. Lett. 2020, 22, 3667–3672;
- 7gK. M. Nakafuku, Z. Zhang, E. A. Wappes, L. M. Stateman, A. D. Chen, D. A. Nagib, Nat. Chem. 2020, 12, 697–704.
- 8X. Li, Y. Shui, P. Shen, Y.-P. Wang, C. Zhang, C. Feng, Chem 2022, 8, 2245–2259.
- 9
- 9aY. Zhang, H. Liu, L. Tang, H.-J. Tang, L. Wang, C. Zhu, C. Feng, J. Am. Chem. Soc. 2018, 140, 10695–10699;
- 9bS.-H. Cai, J.-H. Xie, S. Song, L. Ye, C. Feng, T.-P. Loh, ACS Catal. 2016, 6, 5571–5574;
- 9cS.-H. Cai, D.-X. Wang, L. Ye, Z.-Y. Liu, C. Feng, T.-P. Loh, Adv. Synth. Catal. 2018, 360, 1262–1266;
- 9dD.-X. Wang, S.-H. Cai, H. Liu, L. Ye, C. Zhu, C. Feng, Asian J. Org. Chem. 2021, 10, 1386–1389.
- 10
- 10aŽ. Čeković, Tetrahedron 2003, 59, 8073–8090;
- 10bL. Chang, Q. An, L. Duan, K. Feng, Z. Zuo, Chem. Rev. 2022, 122, 2429–2486.
- 11
- 11aA. N. Herron, D. Liu, G. Xia, J.-Q. Yu, J. Am. Chem. Soc. 2020, 142, 2766–2770;
- 11bJ. Zhang, Y. Li, F. Zhang, C. Hu, Y. Chen, Angew. Chem. Int. Ed. 2016, 55, 1872–1875;
- 11cG. Tan, M. Das, H. Keum, P. Bellotti, C. Daniliuc, F. Glorius, Nat. Chem. 2022, 14, 1174–1184;
- 11dA.-L. Barthelemy, B. Tuccio, E. Magnier, G. Dagousset, Angew. Chem. Int. Ed. 2018, 57, 13790–13794;
- 11eW. Zheng, J. W. Lee, C. A. Morales-Rivera, P. Liu, M.-Y. Ngai, Angew. Chem. Int. Ed. 2018, 57, 13795–13799.
- 12
- 12aM. G. Kociolek, K. P. Kalbarczyk, Synth. Commun. 2004, 34, 4387–4394;
- 12bV. F. Caetano, F. W. J. Demnitz, F. B. Diniz, R. M. Mariz, M. Navarro, Tetrahedron Lett. 2003, 44, 8217–8220;
- 12cM. H. Seo, Y. Y. Lee, Y. M. Goo, Synth. Commun. 1994, 24, 1433–1439.
- 13E. Tsui, A. J. Metrano, Y. Tsuchiya, R. R. Knowles, Angew. Chem. Int. Ed. 2020, 59, 11845–11849.
- 14C. Le, T. Q. Chen, T. Liang, P. Zhang, D. W. C. MacMillan, Science 2018, 360, 1010–1014.
- 15J. Luo, J. Zhang, ACS Catal. 2016, 6, 873–877.
- 16
- 16aF. Juliá, T. Constantin, D. Leonori, Chem. Rev. 2022, 122, 2292–2352;
- 16bC. Chatgilialoglu, C. Ferreri, Y. Landais, V. I. Timokhin, Chem. Rev. 2018, 118, 6516–6572.
- 17
- 17aM. Rueda-Becerril, C. Chatalova Sazepin, J. C. T. Leung, T. Okbinoglu, P. Kennepohl, J.-F. Paquin, G. M. Sammis, J. Am. Chem. Soc. 2012, 134, 4026–4029;
- 17bG. H. Lovett, S. Chen, X.-S. Xue, K. N. Houk, D. W. C. MacMillan, J. Am. Chem. Soc. 2019, 141, 20031–20036;
- 17cC. Chatalova-Sazepina, R. Hemelaereb, J.-F. Paquin, G. M. Sammis, Synthesis 2015, 47, 2554–2569;
- 17dL. Yang, T. Dong, H. M. Revankar, C.-P. Zhang, Green Chem. 2017, 19, 3951–3992;
- 17eB. Lantaño, A. Postigo, Org. Biomol. Chem. 2017, 15, 9954–9973;
- 17fH. Yan, C. Zhu, Sci. China Chem. 2017, 60, 214–222;
- 17gD. Meyer, H. Jangra, F. Walther, H. Zipse, P. Renaud, Nat. Commun. 2018, 9, 4888;
- 17hR. Szpera, D. F. J. Moseley, L. B. Smith, A. J. Sterling, V. Gouverneur, Angew. Chem. Int. Ed. 2019, 58, 14824–14848;
- 17iJ. Zhang, J. Wang, Q. Cheng, Chin. J. Chem. 2024, 42, 1009–1031.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.