Dynamic Covalent Bonds Regulate Zinc Plating/Stripping Behaviors for High-Performance Zinc Ion Batteries
Yafei Guo
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Prof. Chong Luo
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, Shandong 250300 China
Search for more papers by this authorMingfang Yang
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorHuirong Wang
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorWenwen Ma
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorKaikai Hu
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Li Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, Shandong 250300 China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081 China
Search for more papers by this authorProf. Feng Wu
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, Shandong 250300 China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Prof. Renjie Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, Shandong 250300 China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081 China
Search for more papers by this authorYafei Guo
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Prof. Chong Luo
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, Shandong 250300 China
Search for more papers by this authorMingfang Yang
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorHuirong Wang
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorWenwen Ma
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorKaikai Hu
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Search for more papers by this authorProf. Li Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, Shandong 250300 China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081 China
Search for more papers by this authorProf. Feng Wu
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, Shandong 250300 China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081 China
Search for more papers by this authorCorresponding Author
Prof. Renjie Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, Shandong 250300 China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081 China
Search for more papers by this authorAbstract
Artificial interfaces provide a comprehensive approach to controlling zinc dendrite and surface corrosion in zinc-based aqueous batteries (ZABs). However, due to consistent volume changes during zinc plating/stripping, traditional interfacial layers cannot consistently adapt to the dendrite surface, resulting in uncontrolled dendrite growth and hydrogen evolution. Herein, dynamic covalent bonds exhibit the Janus effect towards zinc deposition at different current densities, presenting a holistic strategy for stabilizing zinc anode. The PBSC intelligent artificial interface consisting of dynamic B−O covalent bonds is developed on zinc anode to mitigate hydrogen evolution and restrict dendrite expansion. Owing to the reversible dynamic bonds, PBSC exhibits shape self-adaptive characteristics at low current rates, which rearranges the network to accommodate volume changes during zinc plating/stripping, resisting hydrogen evolution. Moreover, the rapid association of B−O dynamic bonds enhances mechanical strength at dendrite tips, presenting a shear-thickening effect and suppressing further dendrite growth at high current rates. Therefore, the assembled symmetrical battery with PBSC maintains a stable cycle of 4500 hours without significant performance degradation and the PBSC@Zn||V2O5 pouch cell demonstrates a specific capacity exceeding 170 mAh g−1. Overall, the intelligent interface with dynamic covalent bonds provides innovative approaches for zinc anode interfacial engineering and enhances cycling performance.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202406597-sup-0001-misc_information.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang, W. Zhou, B. Wang, Z. Yang, X. Wang, L. Wang, Z. Sun, F. Bu, Z. Zhao, W. Li, D. Zhao, D. Chao, Adv. Mater. 2023, 35, 2209288.
- 2
- 2aZ. Bie, Q. Yang, X. Cai, Z. Chen, Z. Jiao, J. Zhu, Z. Li, J. Liu, W. Song, C. Zhi, Adv. Energy Mater. 2022, 12, 2202683;
- 2bY. Li, Y. Wang, Y. Xu, W. Tian, J. Wang, L. Cheng, H. Yue, R. Ji, Q. Zhu, H. Yuan, H. Wang, Small 2022, 18, 2202214;
- 2cX. Zhou, R. Chen, E. Cui, Q. Liu, H. Zhang, J. Deng, N. Zhang, C. Xie, L. Xu, L. Mai, Energy Storage Mater. 2023, 55, 538–545.
- 3
- 3aL. Liu, J. Cheng, X. Wang, J. Zhang, B. Wang, ACS Appl. Mater. Interfaces. 2023, 15, 31867–31879;
- 3bY. Wang, H. Sun, N. Li, K. Chen, X. Yang, H. Liu, G. Zheng, J. Liu, Z. Wu, L. Zhai, L. Mi, ACS Appl. Energ. Mater. 2022, 5, 2375–2383.
- 4L. Wang, Z. Wang, H. Li, D. Han, X. Li, F. Wang, J. Gao, C. Geng, Z. Zhang, C. Cui, Z. Weng, C. Yang, K. P. Loh, Q. Yang, ACS Nano. 2023, 17, 668–677.
- 5D. Li, Y. Tang, S. Liang, B. Lu, G. Chen, J. Zhou, Energy Environ. Sci. 2023, 16, 3381–3390.
- 6
- 6aH. Yan, S. Li, Y. Nan, S. Yang, B. Li, Adv. Energy Mater. 2021, 11, 2100186;
- 6bD. Xu, X. Ren, Y. Xu, Y. Wang, S. Zhang, B. Chen, Z. Chang, A. Pan, H. Zhou, Adv. Sci. 2023, 2303773;
- 6cY. Liu, T. Guo, Q. Liu, F. Xiong, M. Huang, Y. An, J. Wang, Q. An, C. Liu, L. Mai, Mater. Today 2022, 28, 101056;
- 6dM. Cui, B. Yan, F. Mo, X. Wang, Y. Huang, J. Fan, C. Zhi, H. Li, Chem. Eng. J. 2022, 434, 134688;
- 6eM. Zhang, H. Hua, P. Dai, Z. He, L. Han, P. Tang, J. Yang, P. Lin, Y. Zhang, D. Zhan, J. Chen, Y. Qiao, C. Li, J. Zhao, Y. Yang, Adv. Mater. 2023, 35, 2208630.
- 7
- 7aH. Du, R. Zhao, J. Ji, X. Qi, R. Wang, L. Qie, Y. Huang, Energy Storage Mater. 2023, 54, 461–468;
- 7bL. Hong, X. Wu, Y. Liu, C. Yu, Y. Liu, K. Sun, C. Shen, W. Huang, Y. Zhou, J. Chen, K. Wang, Adv. Funct. Mater. 2023, 33, 2300952.
- 8C. Liu, Z. Li, X. Zhang, W. Xu, W. Chen, K. Zhao, Y. Wang, S. Hong, Q. Wu, M. Li, C. Mei, Adv. Sci. 2022, 9, 2202380.
- 9
- 9aR. Guo, X. Liu, F. Xia, Y. Jiang, H. Zhang, M. Huang, C. Niu, J. Wu, Y. Zhao, X. Wang, C. Han, L. Mai, Adv. Mater. 2022, 34, 2202188;
- 9bX. Xie, S. Liang, J. Gao, S. Guo, J. Guo, C. Wang, G. Xu, X. Wu, G. Chen, J. Zhou, Energy Environ. Sci. 2020, 13, 503–510;
- 9cC. Zhao, Y. Du, Z. Guo, A. Chen, N. Liu, X. Lu, L. Fan, Y. Zhang, N. Zhang, Energy Storage Mater. 2022, 53, 322–330.
- 10Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang, Y. Wang, R. Qin, S. Ding, Y. Song, J. Wu, K. Yang, Z. Wang, Z. Mei, Z. Song, H. Wu, Z. Jiang, G. Qian, L. Yang, F. Pan, Angew. Chem. Int. Ed. 2020, 59, 16594–16601.
- 11
- 11aX. Zheng, Z. Liu, J. Sun, R. Luo, K. Xu, M. Si, J. Kang, Y. Yuan, S. Liu, T. Ahmad, T. Jiang, N. Chen, M. Wang, Y. Xu, M. Chuai, Z. Zhu, Q. Peng, Y. Meng, K. Zhang, W. Wang, W. Chen, Nat. Commun. 2023, 14, 76;
- 11bD. Han, S. Wu, S. Zhang, Y. Deng, C. Cui, L. Zhang, Y. Long, H. Li, Y. Tao, Z. Weng, Q. Yang, F. Kang, Small 2020, 16, 2001736;
- 11cJ. Duan, J. Dong, R. Cao, H. Yang, K. Fang, Y. Liu, Z. Shen, F. Li, R. Liu, H. Li, C. Chen, Adv. Sci. 2023, 2303343;
- 11dB. Li, K. Yang, J. Ma, P. Shi, L. Chen, C. Chen, X. Hong, X. Cheng, M. Tang, Y. He, F. Kang, Angew. Chem. Int. Ed. 2022, 61, e202212587;
- 11eJ. Ji, Z. Zhu, H. Du, X. Qi, J. Yao, H. Wan, H. Wang, L. Qie, Y. Huang, Adv. Mater. 2023, 35, 2211961.
- 12
- 12aZ. Xu, S. Jin, N. Zhang, W. Deng, M. H. Seo, X. Wang, Nano Lett. 2022, 22, 1350–1357;
- 12bJ. Peng, J. Yu, D. Chu, X. Hou, X. Jia, B. Meng, K. Yang, J. Zhao, N. Yang, J. Wu, L. Li, Carbon 2022, 198, 34–45;
- 12cH. Wang, Y. Chen, H. Yu, W. Liu, G. Kuang, L. Mei, Z. Wu, W. Wei, X. Ji, B. Qu, L. Chen, Adv. Funct. Mater. 2022, 32, 2205600;
- 12dT. Chen, F. Huang, Y. Wang, Y. Yang, H. Tian, J. Xue, Adv. Sci. 2022, 9, 2105980.
- 13
- 13aP. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu, L. Liu, N. Yu, Q. Huang, B. Wang, X. Hu, Y. Wu, T. van Ree, Adv. Sci. 2021, 8, 2100309;
- 13bC. Deng, Y. Li, S. Liu, J. Yang, B. Huang, J. Liu, J. Huang, Energy Storage Mater. 2023, 58, 279–286;
- 13cM. Zhu, J. Hu, Q. Lu, H. Dong, D. D. Karnaushenko, C. Becker, D. Karnaushenko, Y. Li, H. Tang, Z. Qu, J. Ge, O. G. Schmidt, Adv. Mater. 2021, 33, 2007497;
- 13dX. Yang, W. Wu, Y. Liu, X. Liu, X. Sun, Chem. Eng. J. 2023, 460, 141678.
- 14
- 14aH. Zhang, Y. Wu, J. Yu, T. Jiang, M. Wu, Adv. Funct. Mater. 2023, 2301912;
- 14bN. Dong, X. Zhao, M. Yan, H. Li, H. Pan, Nano Energy. 2022, 104, 107903;
- 14cX. Zhang, J. Li, D. Liu, M. Liu, T. Zhou, K. Qi, L. Shi, Y. Zhu, Y. Qian, Energy Environ. Sci. 2021, 14, 3120–3129;
- 14dM. Qiu, H. Jia, C. Lan, H. Liu, S. Fu, Energy Storage Mater. 2022, 45, 1175–1182;
- 14eN. Wang, Z. Wu, Y. Long, D. Chen, C. Geng, X. Liu, D. Han, J. Zhang, Y. Tao, Q. Yang, J. Energy Chem. 2022, 73, 277–284;
- 14fY. Xu, X. Zheng, J. Sun, W. Wang, M. Wang, Y. Yuan, M. Chuai, N. Chen, H. Hu, W. Chen, Nano Lett. 2022, 22, 3298–3306.
- 15
- 15aZ. Guo, L. Fan, C. Zhao, A. Chen, N. Liu, Y. Zhang, N. Zhang, Adv. Mater. 2022, 34, 2105133;
- 15bQ. Liu, Y. Wang, X. Hong, R. Zhou, Z. Hou, B. Zhang, Adv. Energy Mater. 2022, 12, 2200318.
- 16W. Guo, X. Bai, Z. Cong, C. Pan, L. Wang, L. Li, C. Chang, W. Hu, X. Pu, ACS Appl. Mater. Interfaces. 2022, 14, 41988–41996.
- 17J. W. Han, B. K. Park, S. Y. Yang, J. Lee, J. Mun, J. W. Choi, K. J. Kim, ACS Appl. Mater. Interfaces. 2022, 14, 48570–48581.
- 18X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao, J. Liu, W. Pang, J. Liu, P. Rao, Q. Wang, J. Mao, Z. Guo, Energy Environ. Sci. 2021, 14, 5947–5957.
- 19C. Meng, W. He, L. Jiang, Y. Huang, J. Zhang, H. Liu, J. Wang, Adv. Funct. Mater. 2022, 32, 2207732.
- 20A. Bayaguud, X. Luo, Y. Fu, C. Zhu, ACS Energy Lett. 2020, 5, 3012–3020.
- 21Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energy Environ. Sci. 2019, 12, 1938–1949.
- 22
- 22aM. Fu, H. Yu, S. Huang, Q. Li, B. Qu, L. Zhou, G. Kuang, Y. Chen, L. Chen, Nano Lett. 2023, 23, 3573–3581;
- 22bH. Chen, H. Wang, J. Li, B. Fei, Z. Wang, ACS Appl. Mater. Interfaces. 2023, 15, 14415–14423;
- 22cS. Zheng, L. Wei, Z. Zhang, J. Pan, J. He, L. Gao, C. Li, Nano Lett. 2022, 22, 9062–9070;
- 22dK. Wang, J. Le, S. Zhang, W. Ren, J. Yuan, T. Su, B. Chi, C. Shao, R. Sun, J. Mater. Chem. A. 2022, 10, 4845–4857;
- 22eR. Chen, Q. Liu, L. Xu, X. Zuo, F. Liu, J. Zhang, X. Zhou, L. Mai, ACS Energy Lett. 2022, 7, 1719–1727.
- 23
- 23aP. Cai, K. Wang, X. He, Q. Li, Z. Zhang, M. Li, H. Li, M. Zhou, W. Wang, K. Jiang, Energy Storage Mater. 2023, 60, 102835;
- 23bP. Senguttuvan, S. D. Han, S. Kim, A. L. Lipson, S. Tepavcevic, T. T. Fister, I. D. Bloom, A. K. Burrell, C. S. Johnson, Adv. Energy Mater. 2016, 6, 1600826.
- 24N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang, M. Qiu, J. Xu, Y. Liu, L. Jiao, F. Cheng, ACS Energy Lett. 2018, 3, 1366–1372.
- 25H. Wang, A. Zhou, Z. Hu, X. Hu, F. Zhang, Z. Song, Y. Huang, Y. Cui, Y. Cui, L. Li, F. Wu, R. Chen, Angew. Chem. Int. Ed. 2024, 63, e202318928.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.