Light-Induced Dynamic Activation of Copper/Silicon Interface for Highly Selective Carbon Dioxide Reduction
This article relates to:
-
Rücktitelbild: Light-Induced Dynamic Activation of Copper/Silicon Interface for Highly Selective Carbon Dioxide Reduction (Angew. Chem. 33/2024)
- Jiali Wang,
- Tai Ying Lai,
- Han-Ting Lin,
- Tsung-Rong Kuo,
- Hsiao-Chien Chen,
- Chun-Sheng Tseng,
- Ching-Wei Tung,
- Chia-Ying Chien,
- Hao Ming Chen,
- Volume 136Issue 33Angewandte Chemie
- First Published online: July 11, 2024
Jiali Wang
Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
These authors contributed equally.
Contribution: Conceptualization (lead), Writing - original draft (lead)
Search for more papers by this authorTai Ying Lai
Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
These authors contributed equally.
Contribution: Data curation (lead), Formal analysis (lead)
Search for more papers by this authorHan-Ting Lin
Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
These authors contributed equally.
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead)
Search for more papers by this authorCorresponding Author
Tsung-Rong Kuo
Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031 Taiwan
Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031 Taiwan
These authors contributed equally.
Contribution: Formal analysis (lead), Funding acquisition (lead)
Search for more papers by this authorHsiao-Chien Chen
Center for Reliability Sciences and Technologies, Chang Gung University, Taoyuan, 333 Taiwan
Contribution: Data curation (equal)
Search for more papers by this authorChun-Sheng Tseng
Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
Contribution: Data curation (equal)
Search for more papers by this authorCorresponding Author
Ching-Wei Tung
Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
Contribution: Data curation (equal)
Search for more papers by this authorChia-Ying Chien
Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
Contribution: Data curation (lead)
Search for more papers by this authorCorresponding Author
Hao Ming Chen
Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
Search for more papers by this authorJiali Wang
Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
These authors contributed equally.
Contribution: Conceptualization (lead), Writing - original draft (lead)
Search for more papers by this authorTai Ying Lai
Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
These authors contributed equally.
Contribution: Data curation (lead), Formal analysis (lead)
Search for more papers by this authorHan-Ting Lin
Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
These authors contributed equally.
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead)
Search for more papers by this authorCorresponding Author
Tsung-Rong Kuo
Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031 Taiwan
Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031 Taiwan
These authors contributed equally.
Contribution: Formal analysis (lead), Funding acquisition (lead)
Search for more papers by this authorHsiao-Chien Chen
Center for Reliability Sciences and Technologies, Chang Gung University, Taoyuan, 333 Taiwan
Contribution: Data curation (equal)
Search for more papers by this authorChun-Sheng Tseng
Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
Contribution: Data curation (equal)
Search for more papers by this authorCorresponding Author
Ching-Wei Tung
Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301 Taiwan
Contribution: Data curation (equal)
Search for more papers by this authorChia-Ying Chien
Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
Contribution: Data curation (lead)
Search for more papers by this authorCorresponding Author
Hao Ming Chen
Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617 Taiwan
National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
Search for more papers by this authorAbstract
Numerous studies have shown a fact that phase transformation and/or reconstruction are likely to occur and play crucial roles in electrochemical scenarios. Nevertheless, a decisive factor behind the diverse photoelectrochemical activity and selectivity of various copper/silicon photoelectrodes is still largely debated and missing in the community, especially the possibly dynamic behaviors of metal catalyst/semiconductor interface. Herein, through in situ X-ray absorption spectroscopy and transmission electron microscope, a model system of Cu nanocrystals with well-defined facets on black p-type silicon (BSi) is unprecedentedly demonstrated to reveal the dynamic phase transformation of forming irreversible silicide at Cu nanocrystal-BSi interface during photoelectrocatalysis, which is validated to originate from the atomic interdiffusion between Cu and Si driven by light-induced dynamic activation process. Significantly, the adaptive junction at Cu−Si interface is activated by an expansion of interatomic Cu−Cu distance for CO2 electroreduction, which efficiently restricts the C−C coupling pathway but strengthens the bonding with key intermediate of *CHO for CH4 yield, resulting in a remarkable 16-fold improvement in the product ratio of CH4/C2 products and an intriguing selectivity switch. This work offers new insights into dynamic structural transformations of metal/semiconductor junction and design of highly efficient catalysts toward photosynthesis.
Conflict of interests
There are no conflicts to declare.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202403333-sup-0001-misc_information.pdf3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. García de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E. H. Sargent, Science 2018, 360 (6390), 783–787.
- 2T. Cai, H. Sun, J. Qiao, L. Zhu, F. Zhang, J. Zhang, Z. Tang, X. Wei, J. Yang, Q. Yuan, W. Wang, X. Yang, H. Chu, Q. Wang, C. You, H. Ma, Y. Sun, Y. Li, C. Li, H. Jiang, Q. Wang, Y. Ma, Science 2021, 373 (6562), 1523–1527.
- 3B. Yao, T. Xiao, O. A. Makgae, X. Jie, S. Gonzalez-Cortes, S. Guan, A. I. Kirkland, J. R. Dilworth, H. A. Al-Megren, S. M. Alshihri, P. J. Dobson, G. P. Owen, J. M. Thomas, P. P. Edwards, Nat. Commun. 2020, 11 (1), 6395.
- 4X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev. 2019, 119 (6), 3962–4179.
- 5J. Wang, H.-Y. Tan, M.-Y. Qi, J.-Y. Li, Z.-R. Tang, N.-T. Suen, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev. 2023, 52 (15), 5013–5050.
- 6S.-C. Lin, C.-C. Chang, S.-Y. Chiu, H.-T. Pai, T.-Y. Liao, C.-S. Hsu, W.-H. Chiang, M.-K. Tsai, H. M. Chen, Nat. Commun. 2020, 11 (1), 3525.
- 7C.-S. Hsu, J. Wang, Y.-C. Chu, J.-H. Chen, C.-Y. Chien, K.-H. Lin, L. D. Tsai, H.-C. Chen, Y.-F. Liao, N. Hiraoka, Y.-C. Cheng, H. M. Chen, Nat. Commun. 2023, 14 (1), 5245.
- 8V. Andrei, I. Roh, P. Yang, Sci. Adv., 2023, 9(6), eade9044.
- 9M. Li, Q. Wang, Y. He, Y. Wang, K. Wang, P. Tsiakaras, S. Song, Coord. Chem. Rev. 2023, 495, 215373.
- 10X. Chang, T. Wang, P. Yang, G. Zhang, J. Gong, Adv. Mater. 2019, 31 (31), 1804710.
- 11S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, N. S. Lewis, J. Am. Chem. Soc. 2011, 133 (5), 1216–1219.
- 12J. T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, J. Oh, Adv. Energy Mater. 2017, 7 (3), 1601103.
- 13I. Roh, S. Yu, C.-K. Lin, S. Louisia, S. Cestellos-Blanco, P. Yang, J. Am. Chem. Soc. 2022, 144 (18), 8002–8006.
- 14B. Zhou, P. Ou, N. Pant, S. Cheng, S. Vanka, S. Chu, R. T. Rashid, G. Botton, J. Song, Z. Mi, Proc. Natl. Acad. Sci. USA 2020, 117 (3), 1330–1338.
- 15K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard, T. F. Jaramillo, J. Am. Chem. Soc. 2014, 136 (40), 14107–14113.
- 16D. Kim, C. Xie, N. Becknell, Y. Yu, M. Karamad, K. Chan, E. J. Crumlin, J. K. Nørskov, P. Yang, J. Am. Chem. Soc. 2017, 139 (24), 8329–8336.
- 17H. S. Jeon, J. Timoshenko, F. Scholten, I. Sinev, A. Herzog, F. T. Haase, B. Roldan Cuenya, J. Am. Chem. Soc. 2019, 141 (50), 19879–19887.
- 18J. Wang, H.-Y. Tan, Y. Zhu, H. Chu, H. M. Chen, Angew. Chem. Int. Ed. 2021, 60 (32), 17254–17267.
- 19J. Wang, H.-C. Chen, H.-Y. Tan, C. M. Tan, Y. Zhu, H. M. Chen, ACS Appl. Mater. Interfaces 2022, 14 (20), 22681–22696.
- 20N.-T. Suen, Z.-R. Kong, C.-S. Hsu, H.-C. Chen, C.-W. Tung, Y.-R. Lu, C.-L. Dong, C.-C. Shen, J.-C. Chung, H. M. Chen, ACS Catal. 2019, 9 (6), 5217–5222.
- 21X. Wang, K. Klingan, M. Klingenhof, T. Möller, J. Ferreira de Araújo, I. Martens, A. Bagger, S. Jiang, J. Rossmeisl, H. Dau, P. Strasser, Nat. Commun. 2021, 12 (1), 794.
- 22R. Hinogami, T. Mori, S. Yae, Y. Nakato, Chem. Lett. 1994, 23 (9), 1725–1728.
- 23S. Chu, S. Fan, Y. Wang, D. Rossouw, Y. Wang, G. A. Botton, Z. Mi, Angew. Chem. Int. Ed. 2016, 55 (46), 14262–14266.
- 24W. J. Dong, J. W. Lim, D. M. Hong, J. Kim, J. Y. Park, W. S. Cho, S. Baek, J.-L. Lee, ACS Appl. Mater. Interfaces 2021, 13 (16), 18905–18913.
- 25Y. Zhu, J. Wang, H. Chu, Y.-C. Chu, H. M. Chen, ACS Energy Lett. 2020, 5 (4), 1281–1291.
- 26Y. Zhu, T.-R. Kuo, Y.-H. Li, M.-Y. Qi, G. Chen, J. Wang, Y.-J. Xu, H. M. Chen, Energy Environ. Sci. 2021, 14 (4), 1928–1958.
- 27J. Wang, H. Y. Tan, T. R. Kuo, S. C. Lin, C. S. Hsu, Y. Zhu, Y. C. Chu, T. L. Chen, J. F. Lee, H. M. Chen, Small 2021, 2005713.
- 28C.-J. Chang, Y. Zhu, J. Wang, H.-C. Chen, C.-W. Tung, Y.-C. Chu, H. M. Chen, J. Mater. Chem. A 2020, 8 (37), 19079–19112.
- 29C.-J. Chang, S.-C. Lin, H.-C. Chen, J. Wang, K. J. Zheng, Y. Zhu, H. M. Chen, J. Am. Chem. Soc. 2020. 142 (28), 12119–12132.
- 30J. Wang, C.-S. Hsu, T.-S. Wu, T.-S. Chan, N.-T. Suen, J.-F. Lee, H. M. Chen, Nat. Commun. 2023, 14 (1), 6576.
- 31G.-B. Wang, L.-L. Lin, H.-T. Wang, H. M. Chen, J. Chin. Chem. Soc. 2023, 70 (12), 2064–2088.
- 32Y. Wang, S. Fan, B. Al Otaibi, Y. Wang, L. Li, Z. Mi, Chem. Eur. J. 2016, 22 (26), 8809–8813.
- 33K. Rossi, R. Buonsanti, Acc. Chem. Res. 2022, 55 (5), 629–637.
- 34G. L. De Gregorio, T. Burdyny, A. Loiudice, P. Iyengar, W. A. Smith, R. Buonsanti, ACS Catal. 2020, 10 (9), 4854–4862.
- 35H. Li, P. Wei, D. Gao, G. Wang, Curr. Opin. Green Sustain. Chem. 2022, 34, 100589.
- 36H. An, L. Wu, L. D. B. Mandemaker, S. Yang, J. de Ruiter, J. H. J. Wijten, J. C. L. Janssens, T. Hartman, W. van der Stam, B. M. Weckhuysen, Angew. Chem. Int. Ed. 2021, 60 (30), 16576–16584.
- 37P. Grosse, D. Gao, F. Scholten, I. Sinev, H. Mistry, B. Roldan Cuenya, Angew. Chem. Int. Ed. 2018, 57 (21), 6192–6197.
- 38C.-J. Chang, S.-F. Hung, C.-S. Hsu, H.-C. Chen, S.-C. Lin, Y.-F. Liao, H. M. Chen, ACS Cent. Sci. 2019, 5 (12), 1998–2009.
- 39Z. Zhang, L. M. Wong, H. G. Ong, X. J. Wang, J. L. Wang, S. J. Wang, H. Chen, T. Wu, Nano Lett. 2008, 8 (10), 3205–3210.
- 40D. Hursán, J. Timoshenko, E. Ortega, H. S. Jeon, M. Rüscher, A. Herzog, C. Rettenmaier, S. W. Chee, A. Martini, D. Koshy, B. Roldan Cuenya, Adv. Mater. 2023, 2307809.
- 41P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent, Nat. Catal. 2018, 1 (2), 103–110.
- 42D. C. Harris, Quantitative Chemical Analysis. 8th ed., W. H. Freeman Co. Ltd., 2010.
- 43D. Niwa, T. Homma, T. Osaka, J. Phys. Chem. B 2004, 108 (28), 9900–9904.
- 44C.-W. Tung, T.-R. Kuo, C.-S. Hsu, Y. Chuang, H.-C. Chen, C.-K. Chang, C.-Y. Chien, Y.-J. Lu, T.-S. Chan, J.-F. Lee, J.-Y. Li, H. M. Chen, Adv. Energy Mater. 2019, 9 (31), 1901308.
- 45A. A. Istratov, C. Flink, H. Hieslmair, E. R. Weber, T. Heiser, Phys. Rev. Lett. 1998, 81 (6), 1243–1246.
- 46P.-Y. Chien, L. Cheng, C.-Y. Liu, J.-E. Li, B. T.-H. Lee, Acta Mater. 2021, 204, 116486.
- 47B. Cao, G.-P. Li, X.-M. Chen, S.-J. Cho, H. Kim, Chin. Phys. Lett. 2008, 25 (4), 1400.
- 48D. Y. Shin, J. H. Jo, J.-Y. Lee, D.-H. Lim, Comput. Theor. Chem. 2016, 1083, 31–37.
- 49W. J. Durand, A. A. Peterson, F. Studt, F. Abild-Pedersen, J. K. Nørskov, Surf. Sci. 2011, 605, 1354–1359.
- 50S. Sakong, A. Groß, Surf. Sci. 2003, 525, 107–118.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.