Alumina – Stabilized SEI and CEI in Potassium Metal Batteries
Corresponding Author
Pengcheng Liu
Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX 78712–1591 USA
Contribution: Conceptualization (lead), Data curation (lead), Methodology (lead), Visualization (lead), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Hongchang Hao
Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX 78712–1591 USA
Contribution: Data curation (supporting), Formal analysis (supporting)
Search for more papers by this authorAditya Singla
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA
Contribution: Data curation (supporting), Software (supporting), Visualization (supporting)
Search for more papers by this authorBairav S. Vishnugopi
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA
Contribution: Data curation (equal), Software (equal), Visualization (supporting), Writing - original draft (supporting)
Search for more papers by this authorJohn Watt
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
Contribution: Data curation (equal), Funding acquisition (supporting), Resources (equal)
Search for more papers by this authorPartha P. Mukherjee
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA
Contribution: Funding acquisition (supporting), Software (lead)
Search for more papers by this authorCorresponding Author
David Mitlin
Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX 78712–1591 USA
Contribution: Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Pengcheng Liu
Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX 78712–1591 USA
Contribution: Conceptualization (lead), Data curation (lead), Methodology (lead), Visualization (lead), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Hongchang Hao
Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX 78712–1591 USA
Contribution: Data curation (supporting), Formal analysis (supporting)
Search for more papers by this authorAditya Singla
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA
Contribution: Data curation (supporting), Software (supporting), Visualization (supporting)
Search for more papers by this authorBairav S. Vishnugopi
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA
Contribution: Data curation (equal), Software (equal), Visualization (supporting), Writing - original draft (supporting)
Search for more papers by this authorJohn Watt
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
Contribution: Data curation (equal), Funding acquisition (supporting), Resources (equal)
Search for more papers by this authorPartha P. Mukherjee
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA
Contribution: Funding acquisition (supporting), Software (lead)
Search for more papers by this authorCorresponding Author
David Mitlin
Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX 78712–1591 USA
Contribution: Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Aluminum oxide (Al2O3) nanopowder is spin-coated onto both sides of commercial polypropene separator to create artificial solid-electrolyte interphase (SEI) and artificial cathode electrolyte interface (CEI) in potassium metal batteries (KMBs). This significantly enhances the stability, including of KMBs with Prussian Blue (PB) cathodes. For example, symmetric cells are stable after 1,000 cycles at 0.5 mA/cm2–0.5 mAh/cm2 and 3.0 mA/cm2–0.5 mAh/cm2. Alumina modified separators promote electrolyte wetting and increase ionic conductivity (0.59 vs. 0.2 mS/cm) and transference number (0.81 vs. 0.23). Cryo-stage focused ion beam (cryo-FIB) analysis of cycled modified anode demonstrates dense and planar electrodeposits, versus unmodified baseline consisting of metal filaments (dendrites) interspersed with pores and SEI. Alumina-modified CEI also suppresses elemental Fe crossover and reduces cathode cracking. Mesoscale modeling of metal – SEI interactions captures crucial role of intrinsic heterogeneities, illustrating how artificial SEI affects reaction current distribution, conductivity and morphological stability.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202402214-sup-0001-misc_information.pdf2.5 MB | Supporting Information |
[email protected]6 MB | Supporting Information |
ange202402214-sup-0001-Movie_S2_-_Wetting_of_baseline-PP.mp46.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Xue, Y. Li, H. Gao, W. Zhou, X. Lu, W. Kaveevivitchai, A. Manthiram, J. B. Goodenough, J. Am. Chem. Soc. 2017, 139, 2164;
- 1bT. Hosaka, K. Kubota, A. S. Hameed, S. Komaba, Chem. Rev. 2020, 120, 6358;
- 1cP. Liu, D. Mitlin, Acc. Chem. Res. 2020, 53, 1161;
- 1dW. Zhang, Y. Liu, Z. Guo, Sci. Adv. 2019, 5, eaav7412.
- 2
- 2aC. Vaalma, D. Buchholz, M. Weil, S. Passerini, Nat. Rev. Mater. 2018, 3, 18013;
- 2bP. Liu, Y. Wang, H. Hao, S. Basu, X. Feng, Y. Xu, J. A. Boscoboinik, J. Nanda, J. Watt, D. Mitlin, Adv. Mater. 2020, 32, 2002908;
- 2cJ. B. Goodenough, Y. Kim, Chem. Mater. 2010, 22, 587;
- 2dA. Laurent, N. Espinosa, Energy Environ. Sci. 2015, 8, 689;
- 2eM. Armand, J. M. Tarascon, Nature 2008, 451, 652;
- 2fJ. Deng, W.-B. Luo, S.-L. Chou, H.-K. Liu, S.-X. Dou, Adv. Energy Mater. 2018, 8, 1701428;
- 2gJ. Y. Hwang, S. T. Myung, Y. K. Sun, Chem. Soc. Rev. 2017, 46, 3529;
- 2hR. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267.
- 3
- 3aA. Eftekhari, ACS Sustainable Chem. Eng. 2019, 7, 5602;
- 3bA. Eftekhari, Z. Jian, X. Ji, ACS Appl. Mater. Interfaces 2017, 9, 4404;
- 3cY. Wu, H. B. Huang, Y. Feng, Z. S. Wu, Y. Yu, Adv. Mater. 2019, 31, 1901414;
- 3dH. Kim, J. C. Kim, M. Bianchini, D.-H. Seo, J. Rodriguez-Garcia, G. Ceder, Adv. Energy Mater. 2018, 8, 1702384;
- 3eS. Kim, S. Qu, R. Zhang, P. V. Braun, Small 2019, 15, e1900258;
- 3fJ. B. Goodenough, Acc. Chem. Res. 2013, 46, 1053;
- 3gJ. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng, C. Zhong, E. Paek, W. Hu, D. Mitlin, Adv. Mater. 2019, 31, e1900429;
- 3hK. Share, A. P. Cohn, R. Carter, B. Rogers, C. L. Pint, ACS Nano 2016, 10, 9738;
- 3iR. Jain, P. Hundekar, T. Deng, X. Fan, Y. Singh, A. Yoshimura, V. Sarbada, T. Gupta, A. S. Lakhnot, S. O. Kim, C. Wang, N. Koratkar, ACS Nano 2019, 13, 14094;
- 3jQ. Zhang, Z. Wang, S. Zhang, T. Zhou, J. Mao, Z. Guo, Electrochem. Energy Rev. 2018, 1, 625;
- 3kB. S. Vishnugopi, E. Kazyak, J. A. Lewis, J. Nanda, M. T. McDowell, N. P. Dasgupta, P. P. Mukherjee, ACS Energy Lett. 2021, 6, 3734.
- 4
- 4aU. S. G. Survey, in U.S. Geological Survey: Mineral Commodity Summaries, Vol. 200 p (Ed: A. C. Tolcin), Reston, VA 2020, https://doi.org/10.3133/mcs2020;
10.3133/mcs2020 Google Scholar
- 4bP. Sun, X. Li, J. Shao, P. V. Braun, Adv. Mater. 2021, 33, e2006229;
- 4cS. Kim, J. Choi, S. M. Bak, L. Sang, Q. Li, A. Patra, P. V. Braun, Adv. Funct. Mater. 2019, 29, 1901719;
- 4dB. Jagger, M. Pasta, Joule 2023, 7, 2228.
- 5
- 5aS. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Electrochem. Commun. 2015, 60, 172;
- 5bK. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 2018, 18, 459;
- 5cK. Chihara, A. Katogi, K. Kubota, S. Komaba, Chem. Commun. 2017, 53, 5208;
- 5dJ. Zheng, Y. Yang, X. Fan, G. Ji, X. Ji, H. Wang, S. Hou, M. R. Zachariah, C. Wang, Energy Environ. Sci. 2019, 12, 615;
- 5eC. Wang, L. Wang, F. Li, F. Cheng, J. Chen, Adv. Mater. 2017, 29, 1702212;
- 5fY. Wu, S. Hu, R. Xu, J. Wang, Z. Peng, Q. Zhang, Y. Yu, Nano Lett. 2019, 19, 1351;
- 5gH. Gao, T. Zhou, Y. Zheng, Q. Zhang, Y. Liu, J. Chen, H. Liu, Z. Guo, Adv. Funct. Mater. 2017, 27, 1702634;
- 5hY. Liu, Z. Tai, J. Zhang, W. K. Pang, Q. Zhang, H. Feng, K. Konstantinov, Z. Guo, H. K. Liu, Nat. Commun. 2018, 9, 3645;
- 5iW. Wang, B. Jiang, C. Qian, F. Lv, J. Feng, J. Zhou, K. Wang, C. Yang, Y. Yang, S. Guo, Adv. Mater. 2018, 30, e1801812;
- 5jC. Yang, J. Feng, F. Lv, J. Zhou, C. Lin, K. Wang, Y. Zhang, Y. Yang, W. Wang, J. Li, S. Guo, Adv. Mater. 2018, 30, 1800036;
- 5kY. Dong, Z. S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi, X. Bao, ACS Nano 2017, 11, 4792;
- 5lC. Zeng, F. Xie, X. Yang, M. Jaroniec, L. Zhang, S. Z. Qiao, Angew. Chem. Int. Ed. Engl. 2018, 57, 8540;
- 5mZ. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang, Y. Qian, Energy Storage Mater. 2018, 11, 38;
- 5nZ. Chen, D. Yin, M. Zhang, Small 2018, 14, e1703818;
- 5oK. Share, A. P. Cohn, R. E. Carter, C. L. Pint, Nanoscale 2016, 8, 16435;
- 5pR. A. Adams, A. Varma, V. G. Pol, Adv. Energy Mater. 2019, 9, 1900550;
- 5qJ. R. Rodriguez, S. B. Aguirre, V. G. Pol, J. Power Sources 2019, 437, 226851;
- 5rZ. Jian, W. Luo, X. Ji, J. Am. Chem. Soc. 2015, 137, 11566;
- 5sW. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen, J. Dai, H. Lin, Y. Xu, F. Gu, V. Barone, L. Hu, Nano Lett. 2015, 15, 7671;
- 5tZ. Jian, S. Hwang, Z. Li, A. S. Hernandez, X. Wang, Z. Xing, D. Su, X. Ji, Adv. Funct. Mater. 2017, 27, 1700324;
- 5uP. Xiong, X. Han, X. Zhao, P. Bai, Y. Liu, J. Sun, Y. Xu, ACS Nano 2019, 13, 2536;
- 5vL. A. Schkeryantz, J. Zheng, W. D. McCulloch, L. Qin, S. Zhang, C. E. Moore, Y. Wu, Chem. Mater. 2020, 32, 10423;
- 5wL. Qin, L. Schkeryantz, J. Zheng, N. Xiao, Y. Wu, J. Am. Chem. Soc. 2020, 142, 11629.
- 6
- 6aH. Wang, D. Yu, C. Kuang, L. Cheng, W. Li, X. Feng, Z. Zhang, X. Zhang, Y. Zhang, Chem. 2019, 5, 313;
- 6bP. Liu, Y. Wang, Q. Gu, J. Nanda, J. Watt, D. Mitlin, Adv. Mater. 2020, 32, e1906735;
- 6cN. Xiao, W. D. McCulloch, Y. Wu, J. Am. Chem. Soc. 2017, 139, 9475;
- 6dY. Li, L. Zhang, S. Liu, X. Wang, D. Xie, X. Xia, C. Gu, J. Tu, Nano Energy 2019, 62, 367;
- 6eW. Liu, P. Liu, D. Mitlin, Adv. Energy Mater. 2020, 10, 2002297;
- 6fJ. Y. Liu, X. W. Gao, G. O. Hartley, G. J. Rees, C. Gong, F. H. Richter, J. Janek, Y. Y. Xia, A. W. Robertson, L. R. Johnson, P. G. Bruce, Joule 2020, 4, 101;
- 6gF. Hao, A. Verma, P. P. Mukherjee, J. Mater. Chem. A 2018, 6, 19664;
- 6hB. S. Vishnugopi, F. Hao, A. Verma, P. P. Mukherjee, Phys. Chem. Chem. Phys. 2020, 22, 11286;
- 6iB. S. Vishnugopi, F. Hao, A. Verma, P. P. Mukherjee, ACS Appl. Mater. Interfaces 2020, 12, 23931.
- 7
- 7aS. Zhao, K. Yan, P. Munroe, B. Sun, G. Wang, Adv. Energy Mater. 2019, 9, 1803757;
- 7bW. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 2017, 46, 3006;
- 7cY. Liao, G. Li, N. Xu, T. Chen, X. Wang, W. Li, Solid State Ionics 2019, 329, 31;
- 7dL. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Chem. Soc. Rev. 2018, 47, 6505;
- 7eN.-S. Choi, J.-G. Han, S.-Y. Ha, I. Park, C.-K. Back, RSC Adv. 2015, 5, 2732;
- 7fD. Lu, M. Xu, L. Zhou, A. Garsuch, B. L. Lucht, J. Electrochem. Soc. 2013, 160, A3138.
- 8
- 8aY. Feng, A. M. Rao, J. Zhou, B. Lu, Adv. Mater. 2023, 35, 2300886;
- 8bX. Lian, Z. Ju, L. Li, Y. Yi, J. Zhou, Z. Chen, Y. Zhao, Z. Tian, Y. Su, Z. Xue, X. Chen, Y. Ding, X. Tao, J. Sun, Adv. Mater. 2023, 36, 2306992;
- 8cX. Liu, X. Wang, Y. Zhou, B. Wang, L. Zhao, H. Zheng, J. Wang, J. Liu, J. Liu, Y. Li, Adv. Mater. 2023, 36, 2308447;
- 8dJ. F. Wu, W. Zhou, Z. Wang, W. W. Wang, X. Lan, H. Yan, T. Shi, R. Hu, X. Cui, C. Xu, X. He, B. W. Mao, T. Zhang, J. Liu, Adv. Mater. 2023, 35, 2209833;
- 8eH. Yang, F. He, F. Liu, Z. Sun, Y. Shao, L. He, Q. Zhang, Y. Yu, Adv. Mater. 2023, 36, 2306512;
- 8fJ. Park, G. Oh, U. H. Kim, M. H. Alfaruqi, X. Xu, Y. Liu, S. Xiong, A. T. Zikri, Y. K. Sun, J. Kim, J. Y. Hwang, Adv. Sci. 2023, 10, 2301201;
- 8gE. Olsson, J. Yu, H. Zhang, H. M. Cheng, Q. Cai, Adv. Energy Mater. 2022, 12, 2200662;
- 8hD. Zhang, X. Ma, L. Wu, J. Wen, F. Li, J. Zhou, A. M. Rao, B. Lu, Adv. Energy Mater. 2022, 13, 2203277;
- 8iF. Liu, L. Wang, F. Ling, X. Zhou, Y. Jiang, Y. Yao, H. Yang, Y. Shao, X. Wu, X. Rui, C. He, Y. Yu, Adv. Funct. Mater. 2022, 32, 2210166;
- 8jJ. Park, Y. Jeong, H. Kang, T. Y. Yu, X. Xu, Y. Liu, S. Xiong, S. H. Lee, Y. K. Sun, J. Y. Hwang, Adv. Funct. Mater. 2023, 33, 2304069;
- 8kS. Xie, W. Xie, Q. Zhang, X. Cheng, X. Ouyang, B. Lu, Adv. Funct. Mater. 2023, 33, 2302880;
- 8lL. K. Zhao, X. W. Gao, J. Mu, W. B. Luo, Z. Liu, Z. Sun, Q. F. Gu, F. Li, Adv. Funct. Mater. 2023, 33, 2304292;
- 8mJ. Chen, D. Yu, Q. Zhu, X. Liu, J. Wang, W. Chen, R. Ji, K. Qiu, L. Guo, H. Wang, Adv. Mater. 2022, 34, 2205678;
- 8nL. Tu, Z. Zhang, Z. Zhao, X. Xiang, B. Deng, D. Liu, D. Qu, H. Tang, J. Li, J. Liu, Angew. Chem. Int. Ed. Engl. 2023, 62, 202306325.
- 9
- 9aS. Liu, J. Mao, Q. Zhang, Z. Wang, W. K. Pang, L. Zhang, A. Du, V. Sencadas, W. Zhang, Z. Guo, Angew. Chem. Int. Ed. Engl. 2020, 59, 3638;
- 9bH. Wang, D. Yu, X. Wang, Z. Niu, M. Chen, L. Cheng, W. Zhou, L. Guo, Angew. Chem. Int. Ed. Engl. 2019, 58, 16451;
- 9cT. Hosaka, S. Muratsubaki, K. Kubota, H. Onuma, S. Komaba, J. Phys. Chem. Lett. 2019, 10, 3296;
- 9dW. Du, Q. Xu, R. Zhan, Y. Zhang, Y. Luo, M. Xu, Mater. Lett. 2018, 221, 66;
- 9eB. S. Vishnugopi, F. Hao, A. Verma, L. E. Marbella, V. Viswanathan, P. P. Mukherjee, ACS Energy Lett. 2021, 6, 2190.
- 10
- 10aH. W. Wang, J. Y. Hu, J. H. Dong, K. C. Lau, L. Qin, Y. Lei, B. H. Li, D. Y. Zhai, Y. Y. Wu, F. Y. Kang, Adv. Energy Mater. 2019, 9, 1902697;
- 10bM. Ye, J. Y. Hwang, Y. K. Sun, ACS Nano 2019, 13, 9306;
- 10cP. Liu, H. Hao, H. Celio, J. Cui, M. Ren, Y. Wang, H. Dong, A. R. Chowdhury, T. Hutter, F. A. Perras, J. Nanda, J. Watt, D. Mitlin, Adv. Mater. 2022, 34, 2105855.
- 11
- 11aP. Hundekar, S. Basu, X. Fan, L. Li, A. Yoshimura, T. Gupta, V. Sarbada, A. Lakhnot, R. Jain, S. Narayanan, Y. Shi, C. Wang, N. Koratkar, Proc. Nat. Acad. Sci. 2020, 117, 201915470;
- 11bL. Li, S. Basu, Y. Wang, Z. Chen, P. Hundekar, B. Wang, J. Shi, Y. Shi, S. Narayanan, N. Koratkar, Science 2018, 359, 1513.
- 12Y. Gu, W. W. Wang, Y. J. Li, Q. H. Wu, S. Tang, J. W. Yan, M. S. Zheng, D. Y. Wu, C. H. Fan, W. Q. Hu, Z. B. Chen, Y. Fang, Q. H. Zhang, Q. F. Dong, B. W. Mao, Nat. Commun. 2018, 9, 1339.
- 13Y. Jiang, Y. Yang, F. Ling, G. Lu, F. Huang, X. Tao, S. Wu, X. Cheng, F. Liu, D. Li, H. Yang, Y. Yao, P. Shi, Q. Chen, X. Rui, Y. Yu, Adv. Mater. 2022, 34, e2109439.
- 14H. Yang, F. He, M. Li, F. Huang, Z. Chen, P. Shi, F. Liu, Y. Jiang, L. He, M. Gu, Y. Yu, Adv. Mater. 2021, 33, 2106353.
- 15W. Liu, Z. Chen, Z. Zhang, P. Jiang, Y. Chen, E. Paek, Y. Wang, D. Mitlin, Energy Environ. Sci. 2021, 14, 382.
- 16S. Wang, Y. Yan, D. Xiong, G. Li, Y. Wang, F. Chen, S. Chen, B. Tian, Y. Shi, Angew. Chem. Int. Ed. Engl. 2021, 60, 25122.
- 17
- 17aX. Tang, D. Zhou, P. Li, X. Guo, B. Sun, H. Liu, K. Yan, Y. Gogotsi, G. Wang, Adv. Mater. 2020, 32, 1906739;
- 17bL. Qin, Y. Lei, H. Wang, J. Dong, Y. Wu, D. Zhai, F. Kang, Y. Tao, Q. H. Yang, Adv. Energy Mater. 2019, 9, 1901427;
- 17cX. Zhao, F. Chen, J. Liu, M. Cheng, H. Su, J. Liu, Y. Xu, J. Mater. Chem. A 2020, 8, 5671.
- 18Y. Zhao, B. Liu, Y. Yi, X. Lian, M. Wang, S. Li, X. Yang, J. Sun, Adv. Mater. 2022, 34, 2202902.
- 19Y. Yi, J. Li, Z. Gao, W. Liu, Y. Zhao, M. Wang, W. Zhao, Y. Han, J. Sun, J. Zhang, Adv. Mater. 2022, 34, 2202685.
- 20P. Liu, D. Yen, B. S. Vishnugopi, V. R. Kankanallu, D. Gursoy, M. Ge, J. Watt, P. P. Mukherjee, Y. K. Chen-Wiegart, D. Mitlin, Angew. Chem. Int. Ed. Engl. 2023, 62, 202300943.
- 21S. Li, H. Zhu, Y. Liu, Z. Han, L. Peng, S. Li, C. Yu, S. Cheng, J. Xie, Nat. Commun. 2022, 13, 4911.
- 22J. Meng, H. Zhu, Z. Xiao, X. Zhang, C. Niu, Y. Liu, G. Jiang, X. Wang, F. Qiao, X. Hong, F. Liu, Q. Pang, L. Mai, ACS Nano 2022, 16, 7291.
- 23
- 23aA. C. Kozen, C. F. Lin, A. J. Pearse, M. A. Schroeder, X. Han, L. Hu, S. B. Lee, G. W. Rubloff, M. Noked, ACS Nano 2015, 9, 5884;
- 23bY. Zhao, L. V. Goncharova, A. Lushington, Q. Sun, H. Yadegari, B. Wang, W. Xiao, R. Li, X. Sun, Adv. Mater. 2017, 29, 1606663;
- 23cY. J. Kim, H. Lee, H. Noh, J. Lee, S. Kim, M. H. Ryou, Y. M. Lee, H. T. Kim, ACS Appl. Mater. Interfaces 2017, 9, 6000.
- 24
- 24aX. Zhang, I. Belharouak, L. Li, Y. Lei, J. W. Elam, A. Nie, X. Chen, R. S. Yassar, R. L. Axelbaum, Adv. Energy Mater. 2013, 3, 1299;
- 24bP. Darapaneni, A. U. Mane, A. Turczynski, J. W. Elam, Chem. Mater. 2021, 33, 8079.
- 25W. Luo, C.-F. Lin, O. Zhao, M. Noked, Y. Zhang, G. W. Rubloff, L. Hu, Adv. Energy Mater. 2017, 7, 1601526.
- 26A. Kohandehghan, P. Kalisvaart, M. Kupsta, B. Zahiri, B. S. Amirkhiz, Z. Li, E. L. Memarzadeh, L. A. Bendersky, D. Mitlin, J. Mater. Chem. A 2013, 1, 1600.
- 27H. Hao, T. Hutter, B. L. Boyce, J. Watt, P. Liu, D. Mitlin, Chem. Rev. 2022, 122, 8053.
- 28
- 28aA. J. Kinloch, J. Adhes. Sci. Technol., Springer Dordrecht, 1987;
- 28bG. R. Jenness, M. A. Christiansen, S. Caratzoulas, D. G. Vlachos, R. J. Gorte, J. Phys. Chem. C 2014, 118, 12899;
- 28cH. Tachikawa, T. Tsuchida, J. Mol. Catal. A 1995, 96, 277;
- 28dM. B. Fleisher, L. O. Golender, M. V. Shimanskaya, J. Chem. Soc. Faraday Trans. 1991, 87, 745.
- 29
- 29aR. N. Wenzel, Ind. Eng. Chem. Res. 1936, 28, 988;
- 29bR. N. Wenzel, J. Phys. Colloid Chem. 1949, 53, 1466;
- 29cC. H. Kung, P. K. Sow, B. Zahiri, W. Mérida, Adv. Mater. Interfaces 2019, 6, 1900839;
- 29dS. Zhang, J. Huang, Z. Chen, S. Yang, Y. Lai, J. Mater. Chem. A 2019, 7, 38;
- 29eB. Su, Y. Tian, L. Jiang, J. Am. Chem. Soc. 2016, 138, 1727;
- 29fY. Sun, Z. Guo, Nanoscale Horiz. 2019, 4, 52.
- 30L. Suo, Y. S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 2013, 4, 1481.
- 31P. Albertus, S. Babinec, S. Litzelman, A. Newman, Nat. Energy 2017, 3, 16.
- 32A. Parejiya, R. Amin, R. Essehli, D. L. Wood III, I. Belharouak, ACS Energy Lett. 2020, 5, 3368.
- 33
- 33aK. N. Wood, G. Teeter, ACS Appl. Energ. Mater. 2018, 1, 4493;
- 33bS. Oswald, F. Thoss, M. Zier, M. Hoffmann, T. Jaumann, M. Herklotz, K. Nikolowski, F. Scheiba, M. Kohl, L. Giebeler, D. Mikhailova, H. Ehrenberg, Batteries 2018, 4, 36;
10.3390/batteries4030036 Google Scholar
- 33cS. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558;
- 33dD. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, R. S. Ruoff, Carbon 2009, 47, 145;
- 33eA. Siokou, F. Ravani, S. Karakalos, O. Frank, M. Kalbac, C. Galiotis, Appl. Surf. Sci. 2011, 257, 9785;
- 33fL. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, J. Electron Spectrosc. Relat. Phenom. 2014, 195, 145.
- 34
- 34aQ. Zhang, J. Mao, W. K. Pang, T. Zheng, V. Sencadas, Y. Chen, Y. Liu, Z. Guo, Adv. Energy Mater. 2018, 8, 1703288;
- 34bV. Renman, D. O. Ojwang, C. Pay Gómez, T. Gustafsson, K. Edström, G. Svensson, M. Valvo, J. Phys. Chem. C 2019, 123, 22040;
- 34cH. Chen, A. Pei, D. Lin, J. Xie, A. Yang, J. Xu, K. Lin, J. Wang, H. Wang, F. Shi, D. Boyle, Y. Cui, Adv. Energy Mater. 2019, 9, 1900858;
- 34dC. Z. Zhao, P. Y. Chen, R. Zhang, X. Chen, B. Q. Li, X. Q. Zhang, X. B. Cheng, Q. Zhang, Sci. Adv. 2018, 4, eaat3446.
- 35Y. Zhou, M. Su, X. Yu, Y. Zhang, J. G. Wang, X. Ren, R. Cao, W. Xu, D. R. Baer, Y. Du, O. Borodin, Y. Wang, X. L. Wang, K. Xu, Z. Xu, C. Wang, Z. Zhu, Nat. Nanotechnol. 2020, 15, 224.
- 36E. Peled, S. Menkin, J. Electrochem. Soc. 2017, 164, A1703.
- 37
- 37aM. R. Palacín, A. de Guibert, Science 2016, 351, 1253292;
- 37bJ. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. Power Sources 2005, 147, 269.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.