Enhancing Anion-Selective Catalysis for Stable Lithium Metal Pouch Cells through Charge Separated COF Interlayer
Dr. Peiyu Zhao
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Thses anthors contributed equally to this work.
Search for more papers by this authorYanhua Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Thses anthors contributed equally to this work.
Search for more papers by this authorDr. Baoyu Sun
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Search for more papers by this authorRui Qiao
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Search for more papers by this authorDr. Chao Li
Instrumental Analysis Center, Xi'an Jiaotong University, 710049 Xi'an, China
Search for more papers by this authorPengqi Hai
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Search for more papers by this authorYingche Wang
Xi'an Institute of Electromechanical Information Technology, 710065 Xi'an, China
Search for more papers by this authorProf. Feng Liu
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Search for more papers by this authorCorresponding Author
Prof. Jiangxuan Song
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Search for more papers by this authorDr. Peiyu Zhao
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Thses anthors contributed equally to this work.
Search for more papers by this authorYanhua Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Thses anthors contributed equally to this work.
Search for more papers by this authorDr. Baoyu Sun
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Search for more papers by this authorRui Qiao
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Search for more papers by this authorDr. Chao Li
Instrumental Analysis Center, Xi'an Jiaotong University, 710049 Xi'an, China
Search for more papers by this authorPengqi Hai
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Search for more papers by this authorYingche Wang
Xi'an Institute of Electromechanical Information Technology, 710065 Xi'an, China
Search for more papers by this authorProf. Feng Liu
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Search for more papers by this authorCorresponding Author
Prof. Jiangxuan Song
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, 710049 Xi'an, China
Search for more papers by this authorAbstract
Regulating the composition of solid-electrolyte-interphase (SEI) is the key to construct high-energy density lithium metal batteries. Here we report a selective catalysis anionic decomposition strategy to achieve a lithium fluoride (LiF)-rich SEI for stable lithium metal batteries. To accomplish this, the tris(4-aminophenyl) amine-pyromeletic dianhydride covalent organic frameworks (TP-COF) was adopted as an interlayer on lithium metal anode. The strong donor-acceptor unit structure of TP-COF induces local charge separation, resulting in electron depletion and thus boosting its affinity to FSI−. The strong interaction between TP-COF and FSI− lowers the lowest unoccupied molecular orbital (LUMO) energy level of FSI−, accelerating the decomposition of FSI− and generating a stable LiF-rich SEI. This feature facilitates rapid Li+ transfer and suppresses dendritic Li growth. Notably, we demonstrate a 6.5 Ah LiNi0.8Co0.1Mn0.1O2|TP-COF@Li pouch cell with high energy density (473.4 Wh kg−1) and excellent cycling stability (97.4 %, 95 cycles) under lean electrolyte 1.39 g Ah−1, high areal capacity 5.7 mAh cm−2, and high current density 2.7 mA cm−2. Our selective catalysis strategy opens a promising avenue toward the practical applications of high energy-density rechargeable batteries.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202317016-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Han, D. Xu, S. S. Chi, D. He, Z. Zhang, L. Du, M. Gu, C. Wang, H. Meng, K. Xu, Z. Zheng, Y. Deng, Adv. Mater. 2020, 32, e2004793.
- 2C. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao, J. Liu, Nat. Energy 2019, 4, 551–559.
- 3X. Ren, L. Zou, X. Cao, M. H. Engelhard, W. Liu, S. D. Burton, H. Lee, C. Niu, B. E. Matthews, Z. Zhu, C. Wang, B. W. Arey, J. Xiao, J. Liu, J.-G. Zhang, W. Xu, Joule 2019, 3, 1662–1676.
- 4M. Ue, K. Uosaki, Curr. Opin. Electrochem. 2019, 17, 106–113.
- 5J. Wu, Z. Ju, X. Zhang, A. C. Marschilok, K. J. Takeuchi, H. Wang, E. S. Takeuchi, G. Yu, Adv. Mater. 2022, 2022, 2202780.
- 6S. Park, S. Y. Jeong, T. K. Lee, M. W. Park, H. Y. Lim, J. Sung, J. Cho, S. K. Kwak, S. Y. Hong, N. S. Choi, Nat. Commun. 2021, 12, 838.
- 7V. Viswanathan, A. H. Epstein, Y.-M. Chiang, E. Takeuchi, M. Bradley, J. Langford, M. Winter, Nature 2022, 601, 519–525.
- 8W. Xue, M. Huang, Y. Li, Y. G. Zhu, R. Gao, X. Xiao, W. Zhang, S. Li, G. Xu, Y. Yu, P. Li, J. Lopez, D. Yu, Y. Dong, W. Fan, Z. Shi, R. Xiong, C.-J. Sun, I. Hwang, W.-K. Lee, Y. Shao-Horn, J. A. Johnson, J. Li, Nat. Energy 2021, 6, 495–505.
- 9S. Chen, F. Dai, M. Cai, ACS Energy Lett. 2020, 5, 3140–3151.
- 10W. Deng, W. Dai, X. Zhou, Q. Han, W. Fang, N. Dong, B. He, Z. Liu, ACS Energy Lett. 2020, 6, 115–123.
- 11Y. Feng, C. Zhang, X. Jiao, Z. Zhou, J. Song, Energy Storage Mater. 2020, 25, 172–179.
- 12Z. Ju, J. Nai, Y. Wang, T. Liu, J. Zheng, H. Yuan, O. Sheng, C. Jin, W. Zhang, Z. Jin, H. Tian, Y. Liu, X. Tao, Nat. Commun. 2020, 11, 488.
- 13Y. J. Liu, X. Y. Tao, Y. Wang, C. Jiang, C. Ma, O. W. Sheng, G. X. Lu, X. W. Lou, Science 2022, 375, 739–745.
- 14Z. Shen, W. Zhang, S. Li, S. Mao, X. Wang, F. Chen, Y. Lu, Nano Lett. 2020, 20, 6606–6613.
- 15S. Stalin, M. Tikekar, P. Biswal, G. Li, H. E. N. Johnson, Y. Deng, Q. Zhao, D. Vu, G. W. Coates, L. A. Archer, Nano Lett. 2020, 20, 5749–5758.
- 16T. Wang, Y. Li, J. Zhang, K. Yan, P. Jaumaux, J. Yang, C. Wang, D. Shanmukaraj, B. Sun, M. Armand, Y. Cui, G. Wang, Nat. Commun. 2020, 11, 5429.
- 17P. Zhai, Y. Wei, J. Xiao, W. Liu, J. Zuo, X. Gu, W. Yang, S. Cui, B. Li, S. Yang, Y. Gong, Adv. Energy Mater. 2020, 10, 1903339.
- 18A. J. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon, J. deGooyer, Z. Deng, R. T. White, J. Lee, T. Rodgers, R. Petibon, S. Hy, S. J. H. Cheng, J. R. Dahn, Nat. Energy 2020, 5, 693–702.
- 19L. Sheng, Q. Wang, X. Liu, H. Cui, X. Wang, Y. Xu, Z. Li, L. Wang, Z. Chen, G. L. Xu, J. Wang, Y. Tang, K. Amine, H. Xu, X. He, Nat. Commun. 2022, 13, 172.
- 20C. Yan, R. Xu, Y. Xiao, J. F. Ding, L. Xu, B. Q. Li, J. Q. Huang, Adv. Funct. Mater. 2020, 30, 1909887.
- 21Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D. G. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Y. Zheng, C. V. Amanchukwu, S. T. Hung, Y. Ma, E. G. Lomeli, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2020, 5, 526–533.
- 22J. Li, P. Zou, S. W. Chiang, W. Yao, Y. Wang, P. Liu, C. Liang, F. Kang, C. Yang, Energy Storage Mater. 2020, 24, 700–706.
- 23K. Lin, T. Li, S. W. Chiang, M. Liu, X. Qin, X. Xu, L. Zhang, F. Kang, G. Chen, B. Li, Small 2020, 16, e2001784.
- 24T. S. Wang, X. Liu, X. Zhao, P. He, C. W. Nan, L. Z. Fan, Adv. Funct. Mater. 2020, 30, 2000786.
- 25Q. Xu, X. Yang, M. Rao, D. Lin, K. Yan, R. Du, J. Xu, Y. Zhang, D. Ye, S. Yang, G. Zhou, Y. Lu, Y. Qiu, Energy Storage Mater. 2020, 26, 73–82.
- 26W. Cao, J. Lu, K. Zhou, G. Sun, J. Zheng, Z. Geng, H. Li, Nano Energy 2022, 95, 106983.
- 27P. Zhao, G. Kuang, R. Qiao, K. Liu, F. Boorboor Ajdari, K. Sun, C. Bao, M. Niasari, J. Song, ACS Appl. Energ. Mater. 2022, 5, 10141–10148.
- 28M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li, T. Liu, C. Wang, Y.-S. Hu, H. Li, X. Huang, L. Chen, L. Suo, Nat. Commun. 2023, 14, 1082.
- 29Y. Zhao, T. Zhou, M. Mensi, J. W. Choi, A. Coskun, Nat. Commun. 2023, 14, 299.
- 30J. Holoubek, M. Yu, S. Yu, M. Li, Z. Wu, D. Xia, P. Bhaladhare, M. S. Gonzalez, T. A. Pascal, P. Liu, Z. Chen, ACS Energy Lett. 2020, 5, 1438–1447.
- 31H. Wang, Z. Yu, X. Kong, W. Huang, Z. Zhang, D. G. Mackanic, X. Huang, J. Qin, Z. Bao, Y. Cui, Adv. Mater. 2021, 33, 2008619.
- 32J. Moon, D. O. Kim, L. Bekaert, M. Song, J. Chung, D. Lee, A. Hubin, J. Lim, Nat. Commun. 2022, 13, 4538.
- 33J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, Adv. Energy Mater. 2021, 11, 2100046.
- 34H. Wu, H. Jia, C. Wang, J. G. Zhang, W. Xu, Adv. Energy Mater. 2020, 11, 2003092.
- 35Z. Zhao, W. Chen, S. Impeng, M. Li, R. Wang, Y. Liu, L. Zhang, L. Dong, J. Unruangsri, C. Peng, C. Wang, S. Namuangruk, S.-Y. Lee, Y. Wang, H. Lu, J. Guo, J. Mater. Chem. A 2020, 8, 3459.
- 36Q.-K. Zhang, X.-Q. Zhang, J. Wan, N. Yao, T.-L. Song, J. Xie, L.-P. Hou, M.-Y. Zhou, X. Chen, B.-Q. Li, R. Wen, H.-J. Peng, Q. Zhang, J.-Q. Huang, Nat. Energy 2023, 8, 725–735.
- 37G. Zhang, J. Chang, L. Wang, J. Li, C. Wang, R. Wang, G. Shi, K. Yu, W. Huang, H. Zheng, T. Wu, Y. Deng, J. Lu, Nat. Commun. 2023, 14, 1081.
- 38Y. Qiao, H. Yang, Z. Chang, H. Deng, X. Li, H. Zhou, Nat. Energy 2021, 6, 653–662.
- 39C. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao, J. Liu, Nat. Energy 2019, 4, 551–559.
- 40S. Zhang, F. Sun, X. Du, X. Zhang, L. Huang, J. Ma, S. Dong, A. Hilger, I. Manke, L. Li, B. Xie, J. Li, Z. Hu, A. C. Komarek, H.-J. Lin, C.-Y. Kuo, C.-T. Chen, P. Han, G. Xu, Z. Cui, G. Cui, Energy Environ. Sci. 2023, 16, 2591–2602.
- 41Y. Zhang, P. Zhao, Q. Nie, Y. Li, R. Guo, Y. Hong, J. Deng, J. Song, Adv. Mater. 2023, 35, 2211032.
- 42M. Zhang, K. Liu, Y. Gan, H. Wang, F. Liu, M. Bai, X. Tang, Z. Wang, S. Li, A. Shao, K. Zhou, T. Wang, Z. Wang, S. Yuan, Y. Ma, Adv. Energy Mater. 2022, 12, 2201390.
- 43P. Zhao, Y. Li, S. Chen, H. Fan, Y. Feng, L. Hu, Y. Zhang, Q. Nie, H. Pei, C. Yang, et al., Adv. Energy Mater. 2022, 12, 2200568.
- 44X. Q. Zhang, T. Li, B. Q. Li, R. Zhang, P. Shi, C. Yan, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 3252–3257.
- 45W. Deng, W. Dai, X. Zhou, Q. Han, W. Fang, N. Dong, B. He, Z. Liu, ACS Energy Lett. 2020, 6, 115–123.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.