Introducing Spiro-locks into the Nitrogen/Carbonyl System towards Efficient Narrowband Deep-blue Multi-resonance TADF Emitters
You-Jun Yu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorZi-Qi Feng
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorXin-Yue Meng
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Search for more papers by this authorLong Chen
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Search for more papers by this authorFu-Ming Liu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Search for more papers by this authorDr. Sheng-Yi Yang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Search for more papers by this authorDr. Dong-Ying Zhou
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Search for more papers by this authorProf. Liang-Sheng Liao
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, 999078 Taipa, Macau SAR, China
Search for more papers by this authorCorresponding Author
Prof. Zuo-Quan Jiang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Search for more papers by this authorYou-Jun Yu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorZi-Qi Feng
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
These authors contributed equally to this work.
Search for more papers by this authorXin-Yue Meng
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Search for more papers by this authorLong Chen
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Search for more papers by this authorFu-Ming Liu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Search for more papers by this authorDr. Sheng-Yi Yang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Search for more papers by this authorDr. Dong-Ying Zhou
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Search for more papers by this authorProf. Liang-Sheng Liao
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, 999078 Taipa, Macau SAR, China
Search for more papers by this authorCorresponding Author
Prof. Zuo-Quan Jiang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
Search for more papers by this authorMinor changes have been made to Figure 1 since its publication in Early View.
Abstract
The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency in the deep-blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR-TADF system, we propose a spiro-lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue-shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro-junction in modulating deep-blue MR-TADF emitters.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202310047-sup-0001-misc_information.pdf5.2 MB | Supporting Information |
ange202310047-sup-0001-SFQ.cif533.7 KB | Supporting Information |
ange202310047-sup-0001-SOQ.cif975.2 KB | Supporting Information |
ange202310047-sup-0001-SSeQ.cif530 KB | Supporting Information |
ange202310047-sup-0001-SSQ.cif1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. R. Naveen, H. I. Yang, J. H. Kwon, Commun. Chem. 2022, 5, 149;
- 1bJ.-M. Teng, Y.-F. Wang, C.-F. Chen, J. Mater. Chem. C 2020, 8, 11340–11353;
- 1cT. Fan, Y. Zhang, D. Zhang, L. Duan, Chem. Eur. J. 2022, 28, e202104624;
- 1dS. Madayanad Suresh, D. Hall, D. Beljonne, Y. Olivier, E. Zysman-Colman, Adv. Funct. Mater. 2020, 30, 1908677;
- 1eH. J. Kim, T. Yasuda, Adv. Opt. Mater. 2022, 10, 2201714;
- 1fS. S. Kothavale, J. Y. Lee, Adv. Opt. Mater. 2020, 8, 2000922;
- 1gB. Li, M. Liu, L. Sang, Z. Li, X. Wan, Y. Zhang, Adv. Opt. Mater. 2023, 11, 2202610;
- 1hJ. Han, Y. Chen, N. Li, Z. Huang, C. Yang, Aggregate 2022, 3, e182;
- 1iY.-J. Yu, F.-M. Liu, X.-Y. Meng, L.-Y. Ding, L.-S. Liao, Z.-Q. Jiang, Chem. Eur. J. 2023, 29, e202202628.
- 2
- 2aC. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913–915;
- 2bY.-K. Qu, Q. Zheng, J. Fan, L.-S. Liao, Z.-Q. Jiang, Acc. Mater. Res. 2021, 2, 1261–1271;
- 2cS. Y. Yang, Y. K. Qu, L. S. Liao, Z. Q. Jiang, S. T. Lee, Adv. Mater. 2022, 34, 2104125.
- 3T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv. Mater. 2016, 28, 2777–2781.
- 4
- 4aJ. Meng, J. Dou, Z. Zhou, P. Chen, N. Luo, Y. Li, L. Luo, F. He, H. Geng, X. Shao, H. L. Zhang, Z. Liu, Angew. Chem. Int. Ed. 2023, 62, e202301863;
- 4bM. Stepien, E. Gonka, M. Zyla, N. Sprutta, Chem. Rev. 2017, 117, 3479–3716;
- 4cA. Borissov, Y. K. Maurya, L. Moshniaha, W. S. Wong, M. Zyla-Karwowska, M. Stepien, Chem. Rev. 2022, 122, 565–788.
- 5
- 5aC. Zhu, Z. H. Guo, A. U. Mu, Y. Liu, S. E. Wheeler, L. Fang, J. Org. Chem. 2016, 81, 4347–4352;
- 5bC. Zhu, X. Ji, D. You, T. L. Chen, A. U. Mu, K. P. Barker, L. M. Klivansky, Y. Liu, L. Fang, J. Am. Chem. Soc. 2018, 140, 18173–18182;
- 5cL. Wang, W. Jiang, S. Guo, S. Wang, M. Zhang, Z. Liu, G. Wang, Y. Miao, L. Yan, J.-Y. Shao, Y.-W. Zhong, Z. Liu, D. Zhang, H. Fu, J. Yao, Chem. Sci. 2022, 13, 13907–13913;
- 5dS. Y. Yang, S. N. Zou, F. C. Kong, X. J. Liao, Y. K. Qu, Z. Q. Feng, Y. X. Zheng, Z. Q. Jiang, L. S. Liao, Chem. Commun. 2021, 57, 11041–11044.
- 6A. Arjona-Esteban, B. Szafranowska, J. Ochsmann, in TADF technology for efficient blue OLEDs: status and challenges from an industrial point of view, (Eds.: S. Pyshkin), IntechOpen, London, 2019, pp. 1–18, https://doi.org/10.5772/intechopen.86534.
- 7Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678–682.
- 8
- 8aJ. Jin, C. Duan, H. Jiang, P. Tao, H. Xu, W. Y. Wong, Angew. Chem. Int. Ed. 2023, 62, e202218947;
- 8bI. S. Park, M. Yang, H. Shibata, N. Amanokura, T. Yasuda, Adv. Mater. 2022, 34, 2107951;
- 8cS. M. Suresh, E. Duda, D. Hall, Z. Yao, S. Bagnich, A. M. Z. Slawin, H. Bassler, D. Beljonne, M. Buck, Y. Olivier, A. Kohler, E. Zysman-Colman, J. Am. Chem. Soc. 2020, 142, 6588–6599;
- 8dS. Oda, B. Kawakami, Y. Yamasaki, R. Matsumoto, M. Yoshioka, D. Fukushima, S. Nakatsuka, T. Hatakeyama, J. Am. Chem. Soc. 2022, 144, 106–112;
- 8eX. Wang, Y. Zhang, H. Dai, G. Li, M. Liu, G. Meng, X. Zeng, T. Huang, L. Wang, Q. Peng, D. Yang, D. Ma, D. Zhang, L. Duan, Angew. Chem. Int. Ed. 2022, 61, e202206916;
- 8fX. Lv, J. Miao, M. Liu, Q. Peng, C. Zhong, Y. Hu, X. Cao, H. Wu, Y. Yang, C. Zhou, J. Ma, Y. Zou, C. Yang, Angew. Chem. Int. Ed. 2022, 61, e202201588;
- 8gS. Madayanad Suresh, L. Zhang, D. Hall, C. Si, G. Ricci, T. Matulaitis, A. M. Z. Slawin, S. Warriner, Y. Olivier, I. D. W. Samuel, E. Zysman-Colman, Angew. Chem. Int. Ed. 2023, 62, e202215522;
- 8hK. R. Naveen, H. Lee, L. H. Seung, Y. H. Jung, C. P. Keshavananda Prabhu, S. Muruganantham, J. H. Kwon, Chem. Eng. J. 2023, 451, 138498.
- 9X.-C. Fan, K. Wang, Y.-Z. Shi, Y.-C. Cheng, Y.-T. Lee, J. Yu, X.-K. Chen, C. Adachi, X.-H. Zhang, Nat. Photonics 2023, 17, 280–285.
- 10
- 10aH. Min, I. S. Park, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 7643–7648;
- 10bH. L. Lee, W. J. Chung, J. Y. Lee, Small 2020, 16, e1907569;
- 10cV. V. Patil, H. L. Lee, I. Kim, K. H. Lee, W. J. Chung, J. Kim, S. Park, H. Choi, W. J. Son, S. O. Jeon, J. Y. Lee, Adv. Sci. 2021, 8, 2101137;
- 10dJ. Wei, C. Zhang, D. Zhang, Y. Zhang, Z. Liu, Z. Li, G. Yu, L. Duan, Angew. Chem. Int. Ed. 2021, 60, 12269–12273;
- 10eH. L. Lee, S. O. Jeon, I. Kim, S. C. Kim, J. Lim, J. Kim, S. Park, J. Chwae, W. J. Son, H. Choi, J. Y. Lee, Adv. Mater. 2022, 34, 2202464;
- 10fY. Xie, L. Hua, Z. Wang, Y. Liu, S. Ying, Y. Liu, Z. Ren, S. Yan, Sci. China Chem. 2023, 66, 826–836.
- 11Y. Yuan, X. Tang, X.-Y. Du, Y. Hu, Y.-J. Yu, Z.-Q. Jiang, L.-S. Liao, S.-T. Lee, Adv. Opt. Mater. 2019, 7, 1801536.
- 12S. N. Zou, C. C. Peng, S. Y. Yang, Y. K. Qu, Y. J. Yu, X. Chen, Z. Q. Jiang, L. S. Liao, Org. Lett. 2021, 23, 958–962.
- 13C. Cao, J. H. Tan, Z. L. Zhu, J. D. Lin, H. J. Tan, H. Chen, Y. Yuan, M. K. Tse, W. C. Chen, C. S. Lee, Angew. Chem. Int. Ed. 2023, 62, e202215226.
- 14Y.-J. Yu, S.-N. Zou, C.-C. Peng, Z.-Q. Feng, Y.-K. Qu, S.-Y. Yang, Z.-Q. Jiang, L.-S. Liao, J. Mater. Chem. C 2022, 10, 4941–4946.
- 15L. Zhou, G. Zhang, Angew. Chem. Int. Ed. 2020, 59, 8963–8968.
- 16
- 16aJ. Li, D. Ding, Y. Tao, Y. Wei, R. Chen, L. Xie, W. Huang, H. Xu, Adv. Mater. 2016, 28, 3122–3130;
- 16bL. J. Sicard, H. C. Li, Q. Wang, X. Y. Liu, O. Jeannin, J. Rault-Berthelot, L. S. Liao, Z. Q. Jiang, C. Poriel, Angew. Chem. Int. Ed. 2019, 58, 3848–3853;
- 16cM. Romain, D. Tondelier, B. Geffroy, A. Shirinskaya, O. Jeannin, J. Rault-Berthelot, C. Poriel, Chem. Commun. 2015, 51, 1313–1315;
- 16dY.-L. Zhang, S.-Y. Yang, Z.-Q. Feng, Y.-K. Qu, D.-Y. Zhou, C. Zhong, L.-S. Liao, Z.-Q. Jiang, Sci. China Chem. 2022, 65, 2219–2230.
- 17Deposition numbers 2241346 (for SFQ), 2241347 (for SOQ), 2241348 (for SSQ), and 2241349 (for SSeQ) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 18
- 18aG. Xia, C. Qu, Y. Zhu, J. Ye, K. Ye, Z. Zhang, Y. Wang, Angew. Chem. Int. Ed. 2021, 60, 9598–9603;
- 18bL. Gan, Z. Xu, Z. Wang, B. Li, W. Li, X. Cai, K. Liu, Q. Liang, S.-J. Su, Adv. Funct. Mater. 2019, 29, 1808088;
- 18cW. Li, B. Li, X. Cai, L. Gan, Z. Xu, W. Li, K. Liu, D. Chen, S. J. Su, Angew. Chem. Int. Ed. 2019, 58, 11301–11305;
- 18dJ. Liu, Y. Zhu, T. Tsuboi, C. Deng, W. Lou, D. Wang, T. Liu, Q. Zhang, Nat. Commun. 2022, 13, 4876.
- 19M. Kasha, H. R. Rawls, M. A. El-Bayoumi, Pure Appl. Chem. 1965, 11, 371.
- 20Z. Xie, B. Yang, F. Li, G. Cheng, L. Liu, G. Yang, H. Xu, L. Ye, M. Hanif, S. Liu, D. Ma, Y. Ma, J. Am. Chem. Soc. 2005, 127, 14152–14153.
- 21X. Qiu, G. Tian, C. Lin, Y. Pan, X. Ye, B. Wang, D. Ma, D. Hu, Y. Luo, Y. Ma, Adv. Opt. Mater. 2021, 9, 2001845.
- 22S. H. Han, J. H. Jeong, J. W. Yoo, J. Y. Lee, J. Mater. Chem. C 2019, 7, 3082–3089.
- 23X. Wu, B.-K. Su, D.-G. Chen, D. Liu, C.-C. Wu, Z.-X. Huang, T.-C. Lin, C.-H. Wu, M. Zhu, E. Y. Li, W.-Y. Hung, W. Zhu, P.-T. Chou, Nat. Photonics 2021, 15, 780–786.
- 24Y. Zhang, J. Wei, D. Zhang, C. Yin, G. Li, Z. Liu, X. Jia, J. Qiao, L. Duan, Angew. Chem. Int. Ed. 2022, 61, e202113206.
- 25R. Pei, H. Liu, C. Zhou, J. Miao, C. Yang, J. Mater. Chem. C 2021, 9, 17136–17142.
- 26
- 26aD. G. Congrave, B. H. Drummond, P. J. Conaghan, H. Francis, S. T. E. Jones, C. P. Grey, N. C. Greenham, D. Credgington, H. Bronstein, J. Am. Chem. Soc. 2019, 141, 18390–18394;
- 26bJ. Xue, Q. Liang, R. Wang, J. Hou, W. Li, Q. Peng, Z. Shuai, J. Qiao, Adv. Mater. 2019, 31, 1808242;
- 26cS. Y. Yang, Y. K. Wang, C. C. Peng, Z. G. Wu, S. Yuan, Y. J. Yu, H. Li, T. T. Wang, H. C. Li, Y. X. Zheng, Z. Q. Jiang, L. S. Liao, J. Am. Chem. Soc. 2020, 142, 17756–17765.
- 27
- 27aG. Liu, H. Sasabe, K. Kumada, A. Matsunaga, H. Katagiri, J. Kido, J. Mater. Chem. C 2021, 9, 8308–8313;
- 27bY. X. Hu, J. Miao, T. Hua, Z. Huang, Y. Qi, Y. Zou, Y. Qiu, H. Xia, H. Liu, X. Cao, C. Yang, Nat. Photonics 2022, 16, 803–810;
- 27cT. Hua, L. Zhan, N. Li, Z. Huang, X. Cao, Z. Xiao, S. Gong, C. Zhou, C. Zhong, C. Yang, Chem. Eng. J. 2021, 426, 131169;
- 27dM. R. Bryce, Sci. China Chem. 2023, 66, 1–3.
- 28
- 28aH. Arai, H. Sasabe, H. Tsuneyama, K. Kumada, J. Kido, Chem. Eur. J. 2021, 27, 10869–10874;
- 28bH. Liu, Z. Liu, G. Li, H. Huang, C. Zhou, Z. Wang, C. Yang, Angew. Chem. Int. Ed. 2021, 60, 12376–12380.
- 29
- 29aH. Noda, X. K. Chen, H. Nakanotani, T. Hosokai, M. Miyajima, N. Notsuka, Y. Kashima, J. L. Bredas, C. Adachi, Nat. Mater. 2019, 18, 1084–1090;
- 29bV. V. Patil, H. L. Lee, I. Kim, K. H. Lee, W. J. Chung, J. Kim, S. Park, H. Choi, W. Son, S. O. Jeon, J. Y. Lee, Adv. Sci. 2021, 8, 2101137;
- 29cX.-K. Chen, S.-F. Zhang, J.-X. Fan, A.-M. Ren, J. Phys. Chem. C 2015, 119, 9728–9733;
- 29dM. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P. Monkman, Nat. Commun. 2016, 7, 13680.
- 30Q. Fu, J. Chen, C. Shi, D. Ma, ACS Appl. Mater. Interfaces 2012, 4, 6579–6586.
- 31
- 31aF. Huang, K. Wang, Y. Z. Shi, X. C. Fan, X. Zhang, J. Yu, C. S. Lee, X. H. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 36089–36097;
- 31bX. Li, Y. Z. Shi, K. Wang, M. Zhang, C. J. Zheng, D. M. Sun, G. L. Dai, X. C. Fan, D. Q. Wang, W. Liu, Y. Q. Li, J. Yu, X. M. Ou, C. Adachi, X. H. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 13472–13480;
- 31cD. Hall, S. M. Suresh, P. L. dos Santos, E. Duda, S. Bagnich, A. Pershin, P. Rajamalli, D. B. Cordes, A. M. Z. Slawin, D. Beljonne, A. Köhler, I. D. W. Samuel, Y. Olivier, E. Zysman-Colman, Adv. Opt. Mater. 2020, 8, 1901627;
- 31dS. Wu, L. Zhang, J. Wang, A. Kumar Gupta, I. D. W. Samuel, E. Zysman-Colman, Angew. Chem. Int. Ed. 2023, 62, e202305182;
- 31eY. Wu, X. Liu, J. Liu, G. Yang, S. Han, D. Yang, X. Cao, D. Ma, Z. Bin, J. You, Mater. Horiz. 2023, https://doi.org/10.1039/D3MH00617D.
- 32
- 32aY. Zou, J. He, N. Li, Y. Hu, S. Luo, X. Cao, C. Yang, Mater. Horiz. 2023, https://doi.org/10.1039/D3MH00800B;
- 32bJ. He, Y. Xu, S. Luo, J. Miao, X. Cao, Y. Zou, Chem. Eng. J. 2023, 471, 144565;
- 32cS. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, W. Huang, Adv. Mater. 2010, 22, 5227–5239.
- 33
- 33aD. H. Ahn, J. H. Maeng, H. Lee, H. Yoo, R. Lampande, J. Y. Lee, J. H. Kwon, Adv. Opt. Mater. 2020, 8, 2000102;
- 33bR. Wang, Y.-L. Wang, N. Lin, R. Zhang, L. Duan, J. Qiao, Chem. Mater. 2018, 30, 8771–8781.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.