Molecular Engineering of Corrole Radicals by Polycyclic Aromatic Fusion: Towards Open-Shell Near-Infrared Materials for Efficient Photothermal Therapy
Dr. Hu Gao
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
These authors contributed equally to this work.
Search for more papers by this authorXu Zhi
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Fan Wu
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorDr. Yue Zhao
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorFangjian Cai
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorPengfei Li
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhen Shen
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorDr. Hu Gao
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
These authors contributed equally to this work.
Search for more papers by this authorXu Zhi
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Fan Wu
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorDr. Yue Zhao
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorFangjian Cai
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorPengfei Li
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhen Shen
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
Search for more papers by this authorAbstract
Open-shell radicals are promising near-infrared (NIR) photothermal agents (PTAs) owing to their easily accessible narrow band gaps, but their stabilization and functionalization remain challenging. Herein, highly stable π-extended nickel corrole radicals with [4n+1] π systems are synthesized and used to prepare NIR-absorbing PTAs for efficient phototheranostics. The light-harvesting ability of corrole radicals gradually improves as the number of fused benzene rings on β-pyrrolic locations increases radially, with naphthalene- and anthracene-fused radicals and their one-electron oxidized [4n] π cations exhibiting panchromatic visible-to-NIR absorption. The extremely low doublet excited states of corrole radicals promote heat generation via nonradiative decay. By encapsulating naphthocorrole radicals with amphiphilic polymer, water-soluble nanoparticles Na-NPs are produced, which exhibit outstanding photostability and high photothermal conversion efficiency of 71.8 %. In vivo anti-tumor therapy results indicate that Na-NPs enable photoacoustic imaging of tumors and act as biocompatible PTAs for tumor ablation when triggered by 808 nm laser light. The “aromatic-ring fusion” strategy for energy-gap tuning of corrole radicals opens a new platform for developing robust NIR-absorbing photothermal materials.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202309208-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
ange202309208-sup-0001-X-ray_crystallographic_data_for_2c.cif9.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. S. Jung, P. Verwilst, A. Sharma, J. Shin, J. L. Sessler, J. S. Kim, Chem. Soc. Rev. 2018, 47, 2280–2297.
- 2Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Chem. Soc. Rev. 2019, 48, 2053–2108.
- 3P. K. Upputuri, M. Pramanik, J. Biomed. Opt. 2019, 24, 040901.
- 4H. Wang, J. Chang, M. Shi, W. Pan, N. Li, B. Tang, Angew. Chem. Int. Ed. 2019, 58, 1057–1061.
- 5S. Liu, X. Zhou, H. Zhang, H. Ou, J. W. Y. Lam, Y. Liu, L. Shi, D. Ding, B. Z. Tang, J. Am. Chem. Soc. 2019, 141, 5359–5368.
- 6C. Liu, S. Zhang, J. Li, J. Wei, K. Müllen, M. Yin, Angew. Chem. Int. Ed. 2019, 58, 1638–1642.
- 7D. Xi, M. Xiao, J. Cao, L. Zhao, N. Xu, S. Long, J. Fan, K. Shao, W. Sun, X. Yan, X. Peng, Adv. Mater. 2020, 32, 1907855.
- 8B. Lü, Y. Chen, P. Li, B. Wang, K. Müllen, M. Yin, Nat. Commun. 2019, 10, 767.
- 9H. Wang, K.-F. Xue, Y. Yang, H. Hu, J.-F. Xu, X. Zhang, J. Am. Chem. Soc. 2022, 144, 2360–2367.
- 10S. Park, J. Lee, H. Jeong, S. Bae, J. Kang, D. Moon, J. Park, Chem 2022, 8, 1993–2010.
- 11J. Su, N. Xu, R. Murase, Z.-M. Yang, D. M. D′Alessandro, J.-L. Zuo, J. Zhu, Angew. Chem. Int. Ed. 2021, 60, 4789–4795.
- 12T. Yan, Y.-Y. Li, J. Su, H.-Y. Wang, J.-L. Zuo, Chem. Eur. J. 2021, 27, 11050–11055.
- 13Z. Mi, P. Yang, R. Wang, J. Unruangsri, W. Yang, C. Wang, J. Guo, J. Am. Chem. Soc. 2019, 141, 14433–14442.
- 14B. Tang, W.-L. Li, Y. Chang, B. Yuan, Y. Wu, M.-T. Zhang, J.-F. Xu, J. Li, X. Zhang, Angew. Chem. Int. Ed. 2019, 58, 15526–15531.
- 15R. Englman, J. Jortner, Mol. Phys. 1970, 18, 145–164.
- 16X. Cui, G. Lu, S. Dong, S. Li, Y. Xiao, J. Zhang, Y. Liu, X. Meng, F. Li, C.-S. Lee, Mater. Horiz. 2021, 8, 571–576.
- 17M. Ethirajan, Y. Chen, P. Joshi, R. K. Pandey, Chem. Soc. Rev. 2011, 40, 340–362.
- 18A. Mahammed, Z. Gross, Coord. Chem. Rev. 2019, 379, 121–132.
- 19J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, G. Zheng, Nat. Mater. 2011, 10, 324–332.
- 20Q. Zou, M. Abbas, L. Zhao, S. Li, G. Shen, X. Yan, J. Am. Chem. Soc. 2017, 139, 1921–1927.
- 21B. Guo, G. Feng, P. N. Manghnani, X. Cai, J. Liu, W. Wu, S. Xu, X. Cheng, C. Teh, B. Liu, Small 2016, 12, 6243–6254.
- 22H. Hu, H. Wang, Y. Yang, J.-F. Xu, X. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202200799.
- 23L. Zhang, Y. Geng, L. Li, X. Tong, S. Liu, X. Liu, Z. Su, Z. Xie, D. Zhu, M. R. Bryce, Chem. Sci. 2021, 12, 5918–5925.
- 24X. Wang, J. Wang, J. Wang, Y. Zhong, L. Han, J. Yan, P. Duan, B. Shi, F. Bai, Nano Lett. 2021, 21, 3418–3425.
- 25D. Shimizu, A. Osuka, Chem. Sci. 2018, 9, 1408–1423.
- 26A. Ghosh, Chem. Rev. 2017, 117, 3798–3881.
- 27F. Wu, J. Liu, P. Mishra, T. Komeda, J. Mack, Y. Chang, N. Kobayashi, Z. Shen, Nat. Commun. 2015, 6, 7547.
- 28M. L. Naitana, W. R. Osterloh, L. Di Zazzo, S. Nardis, F. Caroleo, P. Stipa, K.-N. Truong, K. Rissanen, Y. Fang, K. M. Kadish, R. Paolesse, Inorg. Chem. 2022, 61, 17790–17803.
- 29H. Gao, F. Wu, Y. Zhao, X. Zhi, Y. Sun, Z. Shen, J. Am. Chem. Soc. 2022, 144, 3458–3467.
- 30Q.-C. Chen, S. Fite, N. Fridman, B. Tumanskii, A. Mahammed, Z. Gross, ACS Catal. 2022, 12, 4310–4317.
- 31P. Schweyen, K. Brandhorst, R. Wicht, B. Wolfram, M. Bröring, Angew. Chem. Int. Ed. 2015, 54, 8213–8216.
- 32V. V. Roznyatovskiy, C.-H. Lee, J. L. Sessler, Chem. Soc. Rev. 2013, 42, 1921–1933.
- 33A. V. Cheprakov, M. A. Filatov, J. Porphyrins Phthalocyanines 2009, 13, 291–303.
- 34P. Chen, O. S. Finikova, Z. Ou, S. A. Vinogradov, K. M. Kadish, Inorg. Chem. 2012, 51, 6200–6210.
- 35J. R. Sommer, A. H. Shelton, A. Parthasarathy, I. Ghiviriga, J. R. Reynolds, K. S. Schanze, Chem. Mater. 2011, 23, 5296–5304.
- 36M. A. Filatov, S. Baluschev, I. Z. Ilieva, V. Enkelmann, T. Miteva, K. Landfester, S. E. Aleshchenkov, A. V. Cheprakov, J. Org. Chem. 2012, 77, 11119–11131.
- 37H. Yamada, D. Kuzuhara, T. Takahashi, Y. Shimizu, K. Uota, T. Okujima, H. Uno, N. Ono, Org. Lett. 2008, 10, 2947–2950.
- 38S. Ito, T. Murashima, N. Ono, H. Uno, Chem. Commun. 1998, 1661–1662.
- 39Y. Ishii, S. Ito, Y. Saito, D. Uno, T. Oba, Tetrahedron 2015, 71, 8892–8898.
- 40B. Koszarna, D. T. Gryko, J. Org. Chem. 2006, 71, 3707–3717.
- 41Deposition number 2256076 (for 2c) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 42D. Shimizu, Y. Ide, T. Ikeue, A. Osuka, Angew. Chem. Int. Ed. 2019, 58, 5023–5027.
- 43R. G. Hicks, Org. Biomol. Chem. 2007, 5, 1321–1338.
- 44Y. Fang, Z. Ou, K. M. Kadish, Chem. Rev. 2017, 117, 3377–3419.
- 45F. Wu, Y. Sun, H. Gao, X. Zhi, Y. Zhao, Z. Shen, Sci. China Chem. 2023, 66, 164–173.
- 46T. Yoshida, W. Zhou, T. Furuyama, D. B. Leznoff, N. Kobayashi, J. Am. Chem. Soc. 2015, 137, 9258–9261.
- 47K. Kato, K. Furukawa, A. Osuka, Angew. Chem. Int. Ed. 2018, 57, 9491–9494.
- 48S. Cho, Z. S. Yoon, K. S. Kim, M.-C. Yoon, D.-G. Cho, J. L. Sessler, D. Kim, J. Phys. Chem. 2010, 1, 895–900.
- 49T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 50Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v R. Schleyer, Chem. Rev. 2005, 105, 3842–3888.
- 51S. Klod, E. Kleinpeter, J. Chem. Soc. Perkin Trans. 2 2001, 10, 1893–1898.
- 52D. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758–3772.
- 53R. A. Petros, J. M. DeSimone, Nat. Rev. Drug Discovery 2010, 9, 615–627.
- 54M. Elsabahy, K. L. Wooley, Chem. Soc. Rev. 2012, 41, 2545–2561.
- 55J. Tao, D. Sun, L. Sun, Z. Li, B. Fu, J. Liu, L. Zhang, S. Wang, Y. Fang, H. Xu, Dyes Pigm. 2019, 168, 166–174.
- 56L. V. Wang, S. Hu, Science 2012, 335, 1458–1462.
- 57J. Weber, P. C. Beard, S. E. Bohndiek, Nat. Methods 2016, 13, 639–650.
- 58D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, J. García Solé, Nanoscale 2014, 6, 9494–9530.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.